
Efficient Parallel Execution for

“Un-parallelizable” Codes via Coarse-Grain Speculation

Hari K. Pyla
Virginia Tech
harip@vt.edu

Keywords Speculative Parallelism, Coarse-grain Spec-
ulation, Concurrent Programming and Runtime Sys-
tems

1. Research Problem

As the number of cores in modern processor architec-
tures keeps growing, programmers must use explicit
parallelism to improve performance. Alas, a large body
of extant codes are intrinsically unsuitable for main-
stream parallelization techniques, due to the execution
order constraints imposed by their data and control de-
pendencies. Therefore, realizing the very potential of
many-core hinges on our ability to parallelize these
so called un-parallelizable codes. This research solves
the challenge of enabling efficient parallel execution of
such applications.

2. Motivation

Multiple application domains posses this dilemma;
how to choose the right algorithm when the algorithm’s
performance is dependent on input data. Graph color-
ing illustrates this problem. This algorithm underlies
forms the foundation of diverse domains including job
scheduling, bandwidth allocation, pattern matching,
and compiler optimization (register allocation). Several
state-of-the-art approaches that solve this problem em-
ploy probabilistic and meta-heuristic techniques. The
performance of these techniques vary widely with the
input parameters including nature of the graph, number
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of colors, etc. In addition to this sensitivity to the input,
algorithms for the graph coloring problem are hard to
parallelize due to inherent data dependancies.

Another example is the numerical solution of par-
tial differential equations (PDEs). PDE solvers are a
dominant component of large scale simulations aris-
ing in computational science and engineering appli-
cations such as fluid dynamics, weather and climate
modeling, structural analysis, and computational geo-
sciences. The large, sparse linear systems of algebraic
equations are usually solved using preconditioned it-
erative methods. Unfortunately, the performance of
such solvers can vary widely from problem to problem,
even for a sequence of problems that may be related
in some way, e.g., problems corresponding to discrete
time steps in a time-dependent simulation. The prob-
lem is that the best iterative method is not known a
priori.

Similar examples can be found in widely used com-
binatorial problems including sorting, searching, per-
mutations and partitions where theoretical algorithmic
bounds are well known, but in practice the runtime of
an algorithm depends on a variety of factors including
the amount of input data (algorithmic bounds assume
asymptotic behavior), the sortedness of the input data,
and cache locality of the implementation [3].

3. Overview

We present a framework, Anumita (guess in Sanskrit)
that exploits speculative parallelism to improve the per-
formance of such otherwise hard-to-parallelize appli-
cations on multi/manycore architectures. Anumita pro-
vides a simple programming interface to express at any
arbitrary granularity (e.g., code-blocks, methods, algo-
rithms), the parts of an application that may be exe-
cuted speculatively.
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While the notion of coarse-grain “speculative exe-
cution” is relatively straightforward, there are several
challenges in the details. Writing correct shared mem-
ory parallel programs is a challenging task in itself, and
detecting concurrency bugs (e.g., data races, deadlocks,
order violations, atomicity violations) is an extremely
difficult problem.

Anumita simplifies the notion of speculative par-
allelism and relieves the programmer from the sub-
tleties of concurrent programming. Anumita consists of
a shared library, which implements the framework API
for type-unsafe languages including C, C++ and For-
tran, and a user-level runtime system that transparently
(a) creates, instantiates, and destroys speculative con-
trol flows, (b) performs name-space isolation, (c) tracks
data accesses for each speculation, (d) committs the
memory updates of successful speculations, (e) recov-
ers from memory side-effects of any mis-predictions,
and, (f) performs speculation-aware memory manage-
ment and garbage collection from failed speculations.

In the context of high-performance computing appli-
cations, where the OpenMP threading model is widely
prevalent, Anumita also provides a new OpenMP pragma
to naturally extend speculation into an OpenMP con-
text. To our knowledge, Anumita is first to introduce the
notion of coarse-grain speculation in OpenMP.

Anumita presents well-defined semantics that ensure
program correctness for propagating the memory up-
dates. Anumita is designed to support a wide range of
applications (both sequential and parallel) by provid-
ing expressive evaluation criteria for speculative exe-
cution that go beyond time to solution to include ar-
bitrary quality of solution criteria. Anumita is imple-
mented as a language independent runtime system and
its use requires minimal (around 8-10 lines) modifica-
tions to existing application source code. These modifi-
cations were short and required little to no understand-
ing of the applications themselves. Another key feature
of Anumita is its ability to achieve performance with-
out sacrificing portability and usability. Anumita does
not require any modifications to the compiler or the op-
erating system.

We evaluated Anumati using three real applications:
a multi-algorithmic PDE solving framework [22], a
graph (vertex) coloring problem [16] and a suite of
sorting algorithms [26], and several micro benchmarks.
Our experimental results demonstrate that Anumita (a)
improves the performance of these applications (b)

achieves significant speedup over statically chosen al-
ternatives with modest overhead, and is (c) robust in
the presence of performance variations or failure.

4. Background and Related Work

None of the existing approaches relying on speculation
to achieve parallelism deliver all the desired elements
(portability, scalability, usability, and efficiency) re-
quired to achieve wide-spread adoption. Anumita com-
prehensively solves this problem by exploiting coarse-
grain speculative parallelism.

Fine-grain Speculation: Hardware and compiler
(e.g., branch prediction, prefetching), employ low level
fine-grain speculation, relying on value speculation
([18]) to achieve speculative parallelism. At a much
coarser granularity, we have —loops. Loop level mod-
els [9, 15, 20, 21, 25, 27] achieve parallelism in se-
quential programs by speculatively executing iterations
within loops. Alternatively, several compiler directed
frameworks provide support for speculation at the gran-
ularity of loops. While most of such models provide
transparency, their scope is limited to loops, thus, re-
stricting the amount of parallelism that can be effec-
tively exploited. Additionally, such compile time tech-
niques are suited for applications whose performance
is highly input data dependent (known only at runtime).

Coarse-grain Speculation: Software transaction
memory systems are premised on optimistic specula-
tive execution of potentially coarse-grain code blocks.
Unfortunately, such systems require annotations to
variables, special language support, and, memory al-
location primitives. Furthermore, fine-grain privatiza-
tion of updates within transactions is typically achieved
by instrumenting load and store operations, which can
result in significant impact on application speedup.

In contrast, Anumita does not rely on either value
speculation or employ optimistic concurrency to achieve
parallelism. Anumita does not require special compil-
ers or rely on program/binary instrumentation or collect
runtime program traces. Anumita introduces the notion
of a non-deterministic choice operator to imperative
programming.

Additionally, in contrast to Ding et al. [12]’s be-
havior oriented parallelization (BOP) and Kelsey et
al. [14]’s Fast Track and Praun et al. [30]’s IPOT, Anu-
mita does not allocate each shared variable in a separate
page, or uses a value-based checking algorithm to val-
idate speculation. Furthermore, Anumita does not em-
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Figure 1. Pseudo code for composing speculations us-
ing the programming constructs exposed by Anumita.
In the absence of an evaluation function, the fastest sur-
rogate (by time to solution) wins.

ploy binary instrumentation or collects memory traces.
Instead, Anumita employs novel runtime techniques to
provide transparent name-space isolation. Additionally,
unlike [12, 14, 30] Anumita is capable of supporting
nested speculations.

Trachsel and Gross [28, 29]’s competitive parallel
execution (CPE) execute different variants of a single
threaded program competitively in parallel on a multi-
core system and the variant that finishes first (tempo-
ral order) determines the execution time of that phase,
thereby reducing the overall execution time. In con-
trast, Anumita is capable of supporting both sequen-
tial and parallel applications and provides expressive
evaluation criterion (temporal and qualitative) to evalu-
ate speculations. To our knowledge, Anumita is the only
system that provides such an innovative capability. In
contrast to Cledat et al. [10]’s opportunistic computing,
where multiple instances of a single program are gener-
ated by varying input parameters to the program, which
then compete with each other. Anumita is designed to
support speculation at arbitrary granularity as opposed
to the entire program.

5. Approach

In this section we briefly discuss Anumita’s speculation
model, a few of its programming constructs, and key
elements of its runtime system.

Speculation Model, Syntax and Semantics: Fig-
ures 1 shows pseudocode for composing speculations
using Anumita. A speculative composition is initialized
by a call to init speculation, which returns a spec-
ulation context. A composition is instantiated by a call
to begin speculation, which implements a concur-
rent continuation of the parent flow. Each speculative
flow in the concurrent continuation is exactly identi-
cal to its parent flow in that it shares the same view of
memory (i.e., global variables, heap and more impor-
tantly, the stack.), but is isolated from other concurrent
speculative flows. In order to distinguish speculative
flows from each other, we associate each speculative
flow with a unique rank (similar in principle to MPI and
OpenMP). A speculation may query its rank to map a
particular unit of work to itself. The parent flow then
enters an evaluation context, where it waits (desched-
uled) for evaluation requests from its speculative flows.

To implement an interface for evaluation, the call to
begin speculation takes an argument that specifies
the size of a memory region that is used for communi-
cation between speculative flows and the parent eval-
uation context. Each speculative flow receives a dis-
tinct memory region of the specified size; this region is
shared between a speculative flow and the parent eval-
uation context.

Periodically, a speculative flow can request an evalu-
ation using the evaluate speculation call, passing
the parent intermediate results using the shared mem-
ory region. This call synchronously transfers control
to the evaluation context (i.e., the idled parent flow),
which executes the evaluation function and returns a
status indicating whether the speculation calling the
evaluation should continue or abort execution. The
evaluation context may also use the intermediate results
to cancel other speculations based on the results of the
current evaluation, for instance, when the progress of
one surrogate is significantly better than another within
the same composition. In essence, the evaluation mech-
anism enables pruning of surrogates based on a user-
defined notion of result quality.

On completing execution, a surrogate terminates the
speculative region by calling commit speculation.
The first call to commit speculation succeeds, can-
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celing all other speculations in the composition and
propagating its execution context to the parent flow,
which then resumes execution at the point of commit.
Selecting by time to solution (fastest surrogate wins) is
trivially implemented by not specifying an evaluation
function, as shown in Figure 1. In this case the first
surrogate to commit would succeed and cancel its sib-
lings. Anumita also provides an abort speculation
call that can be used by a surrogate to terminate it-
self if it detects that it is not making progress or
has reached some failure mode. We also provide a
cancel speculation call that can be used by any
surrogate to terminate any other surrogate.

Anumita’s OpenMP speculate pragma is scoped be-
tween an open and close brace ({ and }), with an im-
plicit commit speculation at the end of the spec-
ulate pragma. In traditional OpenMP programming,
name space isolation is achieved through explicit vari-
able scoping (e.g., private, shared, etc.). To simplify
programming, the Anumita runtime automatically iso-
lates speculative flows without requiring explicit pri-
vate scoping.

Runtime System: Neither POSIX thread model
(shared address space) nor the process (distinct address
space) model satisfies the isolation and selective state
sharing requirements imposed by Anumita. Intuitively,
we need an execution model that provides the ability to
selectively share state between execution contexts.

To create the notion of a shared address space among
processes, Anumita’s runtime (a shared library) tra-
verses through the link map of the application (ELF bi-
nary) at runtime and identifies the global data (.bss and
.data) sections, and then unmaps these sections from
the loaded binary image in memory, maps them from a
SYSV memory mapped shared memory file and reini-
tializes these sections to the original values.

This mapping to a shared memory file is done by
the main process before its execution begins at main.
Speculative flows are then instantiated as processes (we
use the clone() system call in Linux to ensure that file
mappings are shared as well) and a copy of the address
space of the parent is created for each instantiation of a
speculation. Consequently, the speculations inherit the
shared global data mapping. Hence any modifications
made by a process to global data are immediately vis-
ible to all processes. This novel technique guarantees
that all the processes have the same view of global data,
similar to a threads model. In essence, this technique

creates a set of processes that are semantically iden-
tical to threads, but operate in distinct virtual address
spaces. By controlling the binding to the shared mem-
ory mapping, data can be selectively isolated or shared
based on the requirements of the speculation model.

To implement a shared heap, we modified Doug
Lea’s dlmalloc [13] allocator to operate over shared
memory mappings so that the allocated memory is visi-
ble to all processes. Anumita’s runtime system provides
global heap allocation by sharing memory management
metadata among processes using the same shared mem-
ory backing mechanism used for .data and .bss sec-
tions. Additionally, our runtime system ensures that the
base address of the stack in a speculative flow is identi-
cal to that of the parent speculation. When composing
a speculation, the runtime saves the stack frame of the
parent speculation and each speculation within a com-
position uses a copy of this stack frame for execution.
Each speculative flow is now identical to its parent flow,
thereby creating a concurrent continuation.

To create speculative flows, Anumita employs thread
pool and to instantiate a speculation, Anumita’s run-
time propagates the execution context (setjmp)) and
stack frame of the parent flow before waking up the
speculative flows from the pool. The speculative flows
adjust their stack and execution context (longjmp) be-
fore starting execution. To determine the write-set and
contain (privatize) the updates of each speculation, An-
umita’s runtime employs page level protection and pri-
vatization of the shared VMA.

To perform the inclusion of updates of the win-
ning speculation, Anumita implements a novel shad-
owing technique. Anumita’s runtime system using the
same shared memory objects and memory mapped files
(globals, heap) creates an identical secondary (shadow)
mapping with the 45th bit set in the virtual address
space. This mapping is always shared among specu-
lative flows and hence any updates to it are immedi-
ately propagated to all the speculative flows. To per-
form inclusion the runtime computes and XOR differ-
ence between its privatized page and its counterpart in
the shadow address space and applies it to the shadow
address space.

6. Experimental Results

We evaluated Anumati using three real applications:
a multi-algorithmic PDE solving framework [22], a
graph (vertex) coloring problem [16] and a suite of sort-
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Figure 2. Time to solution for individual PDE solvers
and speculation based version using Anumita. Cases
that fail to converge in 1000 iterations are not shown.
The results show that Anumita has relatively small
overhead, allowing the speculation based program to
consistently achieve performance comparable to the
fastest individual method for each problem.

ing algorithms [26]. We performed all the experiments
using a 16 core shared memory machine (NUMA) run-
ning Linux 2.6.31-14 with 64GB of RAM. The system
contains four 2 GHz Quad-core AMD Opteron proces-
sors.

We ran each benchmark under two scenarios. The
first scenario uses Anumita to speculatively execute
multiple algorithms concurrently. This was done by
modifying approximately 8-10 lines of source code
in the above benchmarks. Since Anumita guarantees
isolation, these modifications were short and required
little to no understanding of the algorithms themselves.
In the other scenario we ran the vanilla benchmark
executing each algorithm individually.

For the graph coloring problem we experimented
with over 80 DIMACS [11] data sets. Each data set
(graph) has a fixed number of colors that it can use to
color a graph. We used a set of 8 sorting algorithms
with each algorithm sorting 8GB of input data. Using
Anumita we ran all 8 algorithms speculatively creating
a footprint of 64GB to stress test Anumita.

Our experimental results 1 indicate that Anumita is
capable of significantly improving the performance of
hard-to-parallelize and input sensitive applications by
leveraging speculative parallelism. For the PDE solver
(Figure 2) the speedup ranged from 0.84-36.19 and for
the graph coloring the speedup was between 0.95-7.33

1 The full paper on Anumita appeared in OOPSLA 2011.

and for sorting suite we observed a speedup of 0.84-
62.95.

Additionally, Anumita provides resilience to failure
of optimistic algorithmic surrogates. In both graph col-
oring as well as PDE solvers, not all algorithmic surro-
gates successfully run to completion. In the absence of
a system such as Anumita, the alternative is to run the
best known algorithmic surrogate and if it fails, retry
with a fail-safe algorithm that is known to succeed.
While this works for PDE solver with Band Gaussian
Elimination being the fail-safe, there is no clear equiv-
alent for graph coloring, with each surrogate failing at
different combinations of graph geometry and initial
coloring.

Using Anumita it is possible to obtain the best solu-
tion among multiple heuristics. We found that in some
cases where heuristics failed to arrive at a solution, the
use of speculation guaranteed not only a solution but
also the one that is nearly as fast as the fastest alterna-
tive.

7. Contributions

This research addresses an increasingly important prob-
lem of transitioning to many core processors; Achiev-
ing efficient parallel execution of so called un-parallelizable
codes to that end this research exploits coarse-grain
speculative parallelism. We have concretely realized
our idea as Anumita, a language independent run-
time system that is transparent and simple; It relieve
the programmers from the complexities of concur-
rent programming in programming languages includ-
ing C, C++, and Fortran and the OpenMP programming
model. Experimental evaluation using real applications
shows that Anumita achieves significant speedup with-
out sacrificing performance, portability, and usability.
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