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Deterministic Dynamic Deadlock Detection and Recovery
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A core problem with concurrent programming using threads is the potential for deadlocks. Even well-written
codes that spend an inordinate amount of effort in deadlock avoidance cannot always avoid deadlocks, par-
ticularly when the order of lock acquisitions is not known a priori. Furthermore, arbitrarily composing lock
based codes may result in deadlock - one of the primary motivations for transactional memory. In this pa-
per, we present a language independent runtime system (Sammati, agreement in Sanskrit) that provides
automatic deadlock detection and recovery for threaded applications that use the POSIX threads (pthreads)
interface - the de facto standard for UNIX systems. We implemented our runtime as a pre-loadable library
and it does not require either the application source code or recompiling/relinking phases, enabling its use
for existing applications with arbitrary multi-threading models. Our performance evaluation of the Sam-
mati’s runtime with unmodified SPLASH, Phoenix and synthetic benchmark suites shows that it is capable
of performing deadlock detection and recovery even when subject to extremely fine-grain locking (Barnes
(640K locks/sec), FMM (265K locks/sec), and Water (70K locks/sec)). Additionally, we present compile time
extensions to reduce the runtime overhead of Sammati. We find that Sammati is scalable, with speedup
comparable to baseline execution with modest memory overhead for most applications.

Categories and Subject Descriptors: D.1.3 [Programming Techniques]: Concurrent Programming—Par-
allel Programming; D.3.4 [Programming Languages]: Processors—Run-time Environments; D.3.4 [Pro-
gramming Languages]: Processors—Debuggers

General Terms: Algorithms, Design, Languages, Measurement, Performance and Reliability

Additional Key Words and Phrases: Deadlock detection and recovery, concurrent programming, concurrency
bugs, and runtime systems

ACM Reference Format:
Hari K. Pyla and Srinidhi Varadarajan 2012. Deterministic Dynamic Deadlock Detection and Recovery ACM
Trans. Program. Lang. Syst. V, N, Article A (January YYYY), 44 pages.
DOI = 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

1. INTRODUCTION
Making parallel programming easier is one of the most important challenges fac-
ing computer science researchers today. A primary motivation for the strong inter-
est in concurrency is the emerging dominance of many-core architectures. Unfortu-
nately, thread based concurrent programming is highly challenging due to the non-
deterministic nature of thread execution, which complicates the detection and isolation
of concurrency bugs [Lu et al. 2008] [Zhang et al. 2010].

Large software systems are developed by several hundreds to thousands of program-
mers, often spanning multiple teams, making it hard to enforce and maintain a strict
coding discipline required to avoid concurrency bugs [Jula et al. 2008]. Additionally,
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while several billions of dollars are spent each year by the software industry to ensure
software quality and perform testing, unfortunately, exercising all possible paths and
thread interleavings is still practically impossible. In practice, merely detecting a con-
currency bug does not imply that it can be easily fixed. Concurrency bugs often require
careful reasoning to identify the root cause of the problem and not merely where the
effect of bug manifested in the program code. Recently, when addressing a deadlock
in Mozilla, the developers introduced another deadlock which took them them several
months to a year to fix [Volos et al. 2012]. In a different Mozilla bug, the programmers
introduced a data-race to address the actual deadlock [Volos et al. 2012]. Additionally,
concurrency bugs are hard to reproduce and sometimes such bugs are hard to fix re-
quiring a major software redesign. Furthermore, the patches developed to fix a bug
are themselves error-prone (70% of the time in their first release) and they introduce
new bugs [Jin et al. 2011]. On an average, a concurrency bug fix takes about 3 fixes
(patches) before it is actually fixed [Lu et al. 2008; Jin et al. 2011]. Unless we find
mechanisms to enable a large number of programmers, representing a wide array of
applications, to use these parallel shared memory platforms effectively, the potential
of many-core will go unrealized.

In practice, most concurrency bugs in multithreaded applications arise due to data
races that occur due to improperly guarded accesses to memory and deadlocks that
arise due to lack of canonical discipline and circular dependencies among locks. While
bugs due to data races can be resolved by the use of appropriate synchronization, dead-
locks require fairly complex deadlock avoidance techniques, which fail when the order
of lock acquisitions is not known a priori [Pyla and Varadarajan 2010]. Fine-grain
locking significantly exacerbates deadlock avoidance issues, to the point that it is gen-
erally eschewed in favor of simpler less performant locking models that are deadlock
free. Furthermore, due to the potential for deadlocks, programmers cannot arbitrar-
ily compose lock based codes without knowing the internal locking structure. Hence,
rendering lock-based codes non-composable.

In this article we present Sammati (agreement in Sanskrit), a runtime system that
is capable of transparently and deterministically detecting and recovering from dead-
locks in multithreaded applications without requiring any annotations to application
source code or recompiling/relinking phases. Since a large percentage of applications
are based on weakly typed languages such as C and C++ that permit arbitrary pointer
accesses, we eschewed a language based approach in favor of a pure runtime. We imple-
mented Sammati as a pre-loadable library that overloads the standard POSIX threads
(pthreads) interface and makes the acquisition of mutual exclusion locks a deadlock
free operation. While this goal is in principle similar to transactional memory systems,
there is a critical difference. Sammati preserves the mutual exclusion semantics (and
more importantly its limitations) of existing lock based codes and does not provide any
mechanisms to optimistically execute critical sections concurrently as in transactional
memory.

We presented an initial prototype of Sammati in a conference paper [Pyla and
Varadarajan 2010]. In this article, we describe several elements of the runtime system
including privatization, semantics for propagating the privatized updates and dead-
lock detection and recovery algorithms. We perform a detailed study on the tradeoffs
between the design and performance of the key components of the runtime system and
present a comprehensive discussion on the engineering aspects and empirical analysis
of the runtime. We present several optimizations to the runtime system and provide
compile time extensions to reduce its runtime overhead, and improve its overall scal-
ability. Additionally, we extend Sammati to address some of its limitations. The ini-
tial prototype [Pyla and Varadarajan 2010] of Sammati did not support applications
that employed asynchronous synchronization (e.g., condition variables) within critical
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sections. Furthermore, the original prototype of Sammati was unable to recover from
deadlocks if a) the critical section involved, performed a disk I/O, and b) critical sec-
tions updated memory in the thread-local storage (TLS) region of the virtual address
space. In this study we extend Sammati to address several of its limitations. Our ob-
jective in this study is to design a system that is capable of detecting and recovering
from deadlocks in lock based codes written in type unsafe languages at a performance
level required for wide-spread adoption.

The rest of the article is organized as follows. Section 2 presents an overview Sam-
mati. Section 3 describes the design and architectural aspects of Sammati. Section 4
presents a comprehensive description of the implementation details of the runtime sys-
tem and compile time extensions. Section 5 presents a detailed performance evaluation
of Sammati’s runtime system using the SPLASH [SPLASH-2 2012], Phoenix [Ranger
et al. 2007], and synthetic benchmark suites. Section 6 discusses the limitations of a
pure runtime approach and Section 7 presents compile time extensions to overcome
the limitations of a pure runtime. Section 8 discusses the related work in the area of
deadlock detection and recovery. Section 9 presents the directions for future work and
Section 10 provides our conclusions.

2. OVERVIEW
In the remainder of this section, we present a brief overview of Sammati, outline its
key elements and illustrate how Sammati detects and recovers from deadlocks.

Sammati operates by (a) associating memory updates with one or more locks guard-
ing the updates and (b) containing (privatizing) the updates until all locks protecting
the updates have been released viz. the containment property. Intuitively, all memory
updates within a critical section protected by one or more locks are performed atom-
ically at the release of all surrounding locks. In such a system, deadlock detection
can be performed at the acquisition of each lock and recovery merely involves select-
ing a victim lock and discarding all privatized memory updates performed subsequent
to the acquisition of the victim. While conceptually simple, this requires efficient and
transparent mechanisms to (a) identify updates within critical section, (b) isolate (con-
tain) the memory updates (c) preserve existing lock semantics, while still permitting
containment based deadlock detection and recovery in the presence of nested locks
(d) perform inclusion of memory updates from the contained critical section into the
shared program address space and, finally (e) perform deadlock detection and recov-
ery that deterministically eliminates deadlocks without either deadlocking itself or
require an outside (external) agent.

Isolating memory updates: In this article we explore two approaches to detect
and isolate memory updates within critical sections. First, in a pure runtime approach
Sammati implements threads as processes, an idea first proposed by Emery Berger in
Grace [Berger et al. 2009]. Since processes have distinct address spaces, by employing
virtual memory page protection, we can detect the memory updates made within a
critical section. Second, in contexts where the runtime cost of address space protection
is unacceptable, we explore compile time analysis using the LLVM [Lattner and Adve
2004] compiler infrastructure to detect updates within critical sections. Sammati asso-
ciates the updates with critical section(s) and then privatizes these updates from being
visible to other concurrently executing threads until the release of a critical section.
Section 3.1 presents a detailed description of these techniques.

Propagating memory updates: At the successful release of all locks protecting a
critical section, the privatized memory updates within the critical section must to be
made visible i.e., reconciled with other threads in the shared program address space.
Providing isolation and propagating updates in the presence of nested locks, presents
several additional challenges. Hence, in the context of nested locks we need to define
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int a = 0,  b = 0;

Thread-2
...
lock (L2); 
   b++;
   lock (L1);
     ...
   unlock (L1); 
   ...
unlock (L2);
...

2

3

...
lock (L1); 
   a++;
   lock (L2);
     ...
   unlock (L2); 
   ...
unlock (L1);
...

Thread-1

1

4

Fig. 1. Simple multithreaded program prone to deadlock.

semantics i.e., a set of visibility rules that preserve existing lock semantics, while still
ensuring program correctness. Section 3.2 presents the semantics of propagating up-
dates.

To commit the updates to the program address space (shared among threads), Sam-
mati must first determine the exact set of bytes modified within a critical section. To
accomplish this, Sammati computes a bit wise exclusive-or difference between the con-
tents at the privatized version of the page and its copy (twin) that was saved prior to
making any modifications to the page within the critical section. The resulting differ-
ence precisely identifies the modified bits within a critical section. This technique is
inspired from distributed shared memory systems [Carter et al. 1991; Keleher et al.
1994]. The runtime system then updates the contents of the virtual address with the
exclusive-or between the bytes it modified and the contents at the virtual address, thus
making its updates visible to other threads. Section 4.6 presents the implementation
details of propagation of memory updates.

Detecting deadlocks: Based on our observation that a thread may wait (block) on
at most one lock, a waits-for graph is sufficient to detect deadlocks. Such a property
of lock-based codes significantly simplifies deadlock detection, since the perspective
of each thread, all deadlocks are single cycled deadlocks. We propose and implement
an efficient deadlock detection algorithm with a time complexity of upper bound of
O(n), where n is the number of threads. Section 3.3 discusses conditions necessary for
deadlocks and presents the deadlock detection algorithm.

Recovering from deadlocks: On the acquisition of every lock, Sammati runs a
single cycle deadlock detection algorithm. If a deadlock is detected, its deadlock elimi-
nation algorithm breaks the cycle by selecting a victim, rolls it back to the acquisition
of the offending lock, and discards any memory updates. Since the containment en-
sures that memory updates from a critical section are not visible outside the critical
section until a successful release, we simply restart the critical section to recover from
the deadlock. Section 3.4 presents deadlock recovery algorithm.

Putting everything together: We now present a simple multithreaded program
susceptible to deadlock (shown in Figure 1) to illustrate how memory isolation and
privatization, deterministic deadlock detection and recovery algorithms of Sammati
is capable of resolving the deadlock. Since thread interleaving is non-deterministic,
Thread-1 may wait on lock L2 that is owned by Thread-2 and Thread-2 may wait on
lock L1 held by Thread-1 (e.g., Thread-1 → Thread-2 ‖ Thread-2 → Thread-1) result-
ing in a deadlock between the two threads. Initially, both the threads view the same
global state i.e., a = 0 and b = 0. Sammati isolates the updates to variables a and b by
the threads using address space privatization technique described above. Hence the
update to a by thread-1 is not visible to thread-2 and similarly update to variable b
to 1 by thread-2 is not made visible to thread-1. If a deadlock is detected, the runtime
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system rolls back the updates of the offending lock (L1 in case of thread-1 and L2 in
case of thread-2) and releases the lock to resolve the deadlock. In the absence of a
deadlock, the updates to variable a by thread-1 will be made visible to other concur-
rently executing threads such as thread-2 on release of L1. Likewise the updates to b
by thread-2 are made visible to thread-1 on release of L2.

3. DESIGN AND ARCHITECTURE
The core goal of Sammati is to deterministically and transparently detect and recover
from deadlocks at runtime in threaded codes. In this section, we describe the design
objectives and challenges involved in the design of Sammati.

3.1. Privatization and Containment
As discussed previously, to restore from a deadlock successfully, Sammati uses con-
tainment (through privatization) to ensure that memory updates (write set) within a
critical section are not visible to any other thread until the successful release of the
critical section. To implement containment within a critical section we need (a) a mech-
anism to identify memory updates and (b) a mechanism to privatize the updates. In
the case of managed languages such as Java, program analysis can be used to detect
the write set within a critical section, which can then be privatized through rewrit-
ing or source-to-source translation to implement containment. However, in the case
of weakly typed languages such as C and C++, which allow arbitrary pointer access,
program analysis cannot always determine the exact write set and conservatively de-
generates to privatizing the entire address space, which is prohibitively expensive.

Alternately, a runtime can use page level protection to determine the write set within
a critical section. In this approach, all data pages are write-protected on lock acquisi-
tion. If the subsequent critical section attempts to modify a page, it results in a seg-
mentation violation signal. The signal handler then gets the page address, privatizes
the page and changes the page permissions to read-write. While this solution works for
processes that operate in distinct virtual address spaces, it does not work for threaded
codes that share a single virtual address space and page protection bits. Consider the
case where a thread acquires a lock L and updates two values in page P. Page P is
write protected on the acquisition of lock L. To allow the update, the runtime would
perform its privatization action and set the page permission for page P to read/write.
Assume another concurrent thread of the same program now acquires lock M and up-
dates a different data unit on page P. If the two lock acquisitions happen concurrently
before the updates, the first thread that performs the update would change the page
permissions of P to read/write. The second thread performing the update would never
see a protection fault (since page P is already in read/write mode) and hence would not
privatize its update, thereby breaking containment.

In the POSIX threads model, each thread has a distinct stack and threads of a pro-
cess share their address space. In contrast, distinct processes are fully isolated from
each other and execute in separate virtual address spaces. Neither of these models
satisfies the isolation and selective state sharing requirements imposed by Sammati.
Intuitively, we need an execution model that provides the ability to selectively isolate
and share state between execution contexts.

To implement containment for threaded codes, we employ a technique first proposed
in Grace [Berger et al. 2009]. The key observation is that privatization can be im-
plemented efficiently and transparently in a runtime environment if each thread had
its own virtual address space. Modern UNIX operating systems already implement
threads as lightweight processes with no major performance implications. We exploit
this capability by creating multiple processes and share their global data regions
through a common shared memory mapping. In essence, this creates a set of processes

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:6 Hari. K. Pyla and Srinidhi Varadarajan

a = b = 0;

Acquire (L1);
    ...
    Acquire (L2);
        a++;
    Release (L2);
    ...
    Acquire (L3);
        a++;
        b++;
    Release (L3);
    ...
Release (L1);

a = b = 0;

Acquire (L1);
    a++;
    Acquire (L2);
        b++;
Release (L1);
    ...
    Release (L2);

a = 0;

Acquire (L1);
     a++;
Release (L1);

update to 'a' 
is globally 
visible on 
release of L1

updates 
within critical 
sections are 
transactional updates to 'a' and 

'b' are made 
globally visible on 
release of L1

update to 'a' is 
not made globally
visible on release 
of L2; similarly 
updates to 'a' and 
'b' are not visible 
on release of L3

updates 
within critical 
sections are 
transactional

updates to 'a' 
and 'b' are 
made globally 
visible on 
release of L2

(a)

(b)

(c)

Fig. 2. Visibility rules for memory updates within a lock context.

that are semantically equivalent of threads –they share their global data and have
distinct stacks. To achieve containment for a page, we break its binding to the shared
memory region and create a private page mapping (mmap with MAP PRIVATE vs.
mmap with MAP SHARED) at the same virtual address. Any updates to the private
page are thus localized to the thread executing the critical section, thereby implement-
ing containment. In the rest of this paper, we refer to these control flow constructs as
cords to distinguish their properties from regular threads that operate within a single
virtual address space.

3.2. Semantics for Propagating Updates
Propagating the privatized memory updates made within critical section(s) while en-
suring program correctness presents several challenges. In this section we describe the
challenges using simple examples and we describe a set of visibility rules that define
when memory updates made within a critical section are visible outside the critical
section.

In the presence of a single lock (shown in Figure 2(a)) around a critical section,
Sammati propagates the updates on the release of lock, e.g., L1 in Figure 2(a). How-
ever, nested locks are more complex. Consider the nested lock sequence shown in Fig-
ure 2(b). If the memory update to variable a within the critical section protected by lock
L2 were made visible immediately after the release of L2 and subsequently a deadlock
occurred on the acquisition of lock L3, where the victim was lock L1, there would be
no way to unroll the side-effects of making the update to a visible. A secondary is-
sue exists here in associating data with locks. When a unit of data is modified within
a critical section protected by more than one lock, it is not possible to transparently
determine the parent lock that is uniquely responsible for ensuring mutual exclusion
on that data. For instance in Figure 2(c), it is not possible to transparently determine
what data should be made visible. The variable a is protected by lock L1, however, the
variable b, may be protected by L2 or L1.

To ensure containment of memory updates in the presence of nested locks, we employ
transactional semantics. In Figure 3 we illustrate these semantics. We employ the
following two visibility rules for propagating memory updates.

(1) Memory updates are made visible on the release of all locks.
(2) Track the release of nested locks in program order and defer performing the actual

release till all locks around a critical section have been released in program order.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Deterministic Dynamic Deadlock Detection and Recovery A:7

yes

on lock 
acquisition

is lock L already 
acquired ?

no

defer L's
acquisition

acquire L

continue thread execution

(a) Semantics of lock acquisitions

continue thread execution

in nested lock 
sequence ?

i) propagate all updates 
ii) release all locks in 
program order

yes

no

is L the 
outermost lock in 

a nested lock 
sequence

no

yes

on lock 
release

defer lock L's
release

i) propagate updates
ii) release lock L

(b) Semantics of lock releases

Fig. 3. Semantics of lock acquisitions (Figure 3 (a)), releases and propagation of memory updates (Figure 3
(b)).

Rule (1) is a necessary and sufficient condition for Sammati’s deadlock elimination
and recovery and rule (2) preserves the semantics of mutual exclusion. We illustrate
the rationale behind these two rules using the example shown in Figure 2(b). If lock
L2 is released at its original location, but its update to a is privatized (since there is
another lock L1 around the same critical section), another thread may acquire lock L2,
update a and release L2, creating a data race (write-write conflict) in otherwise correct
code. Internally, Sammati tracks deferred releases within a nested lock sequence and
elides the actual lock acquisition if a cord attempts to reacquire a deferred release lock
in the same nested lock sequence.

3.2.1. Subtleties of Visibility Rules. Our proposed semantics for propagating memory up-
dates presents certain side-effects. In Figure 4 we present a few examples based on
Blundell’s et. al.,’s [Colin Blundell and Martin 2005; Colin Blundell and Milo 2006]
work that exposes the subtleties of transactional memory and atomicity semantics.
Consider the example shown in Figure 4 (a), Threads 1 and 2 run to completion in
the absence of Sammati’s privatization (discussed in Section 3.1). Recall privatiza-
tion is used for containment of memory updates to facilitate recovery in the event of
a deadlock. However, in the presence of privatization, since update to variable ‘b’ by
thread-1 is not made visible until the release of the critical section L1, thread-2 is un-
aware of the update and finds the value of ‘b’ to be always false. Similarly update to ‘a’
by thread-2 is also not visible to thread-1, resulting in a deadlock between threads 1
and 2. Consequently, converting lock semantics to transactional regions could result in
deadlocks [Colin Blundell and Martin 2005; Colin Blundell and Milo 2006; Menon et al.
2008; Wang and Wu 2010]. In Figure 4 (b) we present a similar example as Figure 4
(a) except that the ad-hoc synchronization by Thread-1 is not protected by a critical
section.
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(a)

Thread-1

Acquire (L1);
   ...
   while(!a) { }
   b = true;
   ...
Release (L1);

Thread-2

Acquire (L2);
   ...
   a = true;
   while(!b) { }
   ...
Release (L2);

update to 'a' by 
thread-2 is not 
visible to thread-1 
and similarly 
update  to 'b' by 
thread-1 is not 
visible to thread-2

bool a = false, b = false;

Thread-1

   ...
   ...
   while(!a) { }
   b = true;
   ...

Thread-2

Acquire (L1);
   ...
   a = true;
   while(!b) { }
   ...
Release (L1);

(b)update to 'a' by 
thread-2 is not 
visible to thread-1 

bool a = false, b = false;

Fig. 4. Side-effects of privatization and transactional semantics could result in a deadlock.

Thread-1

Acquire (L1);
   ...
   Barrier (B1);
   ...
Release (L1);

Thread-2

Acquire (L2);
   ...
   Barrier (B1);
   ...
Release (L2);

transforming unsafe ad-
hoc synchronization with 
POSIX synchronization 
primitives makes code 
robust

(b)

bool a = false, b = false;

   while(!a) { }
   b = true;

 a = true;
 while(!b) { }

Thread-1

Acquire (L1);
   ...
   my_lock1(a,b);
   my_unlock(a,b);
   ...
Release (L1);

Thread-2

Acquire (L2);
   ...
   my_lock2(a, b);
   my_unlock2(a,b);
   ...
Release (L2);

(a)

bool a = false, b = false;my_lock1 (a, b)
{
  while(!a) { }
  b = true;
}

my_unlock1 (a,b)
{
  assert(a,b);
}

my_lock2 (a, b)
{
  a = true;
  while(!b) { }
}

my_unlock2 (a,b)
{
  assert(a,b);
}

Fig. 5. Simple transformation makes example described in Figures 4 (a) and (b) circumvents the subtleties
of Sammati’s visibility rules and enables Sammati to successfully execute the program.

In practice codes that employ ad-hoc synchronization either in the presence of crit-
ical sections or otherwise are not safe and such a programming practice could result
in several concurrency bugs [Xiong et al. 2010]. Furthermore, such codes assume and
rely on certain memory consistency guarantees to propagate the updates, for instance,
update to ‘a’ by thread-2 may not be propagated to other threads (e.g., thread-1) po-
tentially running on other cores unless the program includes instructions to flush the
memory updates immediately after the update. Consequently, the example code in Fig-
ures 4 (a) and (b) may fail to run and result in a deadlock on architectures that do not
provide such guarantees even in the absence of Sammati.

Providing support for mixed locking regimes i.e., employing ad-hoc synchronization
within critical sections conflicts with any runtime’s system that supports transparent
(containment through privatization without modifying source code) deadlock recovery.
Consequently, Sammati is incapable of running such codes while ensuring the guar-
antee of a transparent deadlock recovery. In the presence of such codes to facilitate
recovery, we recommend minor modifications to the program by replacing the ad-hoc
synchronization with traditional POSIX spin-locks, condition variables and signaling,
and barriers (shown in Figure 5 (b)).

In the event that the ad-hoc synchronization is an absolute necessity, the program-
mer can provide Sammati with a wrapper around ad-hoc synchronization in the form
of a user-defined lock as shown in Figure 5 (a).
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3.3. Deadlock Detection
A concurrent multi-threaded program can hold a set of locks and simultaneously be
waiting on one or more locks. In such a context, deadlocks may arise due to multi-
ple circular dependencies resulting in a multi-cycle deadlock. Eliminating multi-cycle
deadlocks requires potentially multiple victims and the deadlock detection algorithm
has to execute in a context that is guaranteed to not be a part of the deadlock itself. Ad-
ditionally, multi-cycle deadlock detection algorithms are typically implemented as an
external process that implements distributed deadlock detection and recovery. How-
ever, to transparently detect deadlocks we need an efficient mechanism that is capable
of deterministically eliminating deadlocks without either (a) deadlocking itself or (b)
requiring an outside agent.

Since threads are transparently converted to cords in Sammati, the key observation
here is that each cord (a single threaded process) may only wait (block) on a single
resource (lock), a waits-for graph is sufficient to detect deadlocks. Such a property of
lock based codes, significantly simplifies deadlock detection, since from a perspective
of each cord, all deadlocks are single cycled deadlocks. Since all cords share a global
address space, each thread can access the locking information pertaining to remain-
ing threads including the set of locks currently owned/held by a thread –holding set
and lock on which a thread is currently waiting –waiting set. Deadlock detection can
hence be performed at lock acquisition a) without requiring and external agent and b)
without having to worry about eliminating multi-cycle deadlocks that require multi-
ple victims for deadlock resolution. Detection is also guaranteed not be a part of the
deadlock itself.

Algorithm 1 shows the deadlock detection algorithm that executes at the acquisition
of every lock. The detection algorithm uses three data structures – a holding hash
table that associates locks being held with its owning cord, a waiting hash table that
associates a cord with a single lock it is waiting on, and a per cord list of locks ordered
(queue) by the program order of acquisition. The list of locks tracks nested locks and
is freed at the release of all locks in a nested lock sequence. The deadlock detection
algorithm implements a deadlock free lock acquisition and starts off by saving a restore
point for deadlock recovery. The restore point contains the contents of the stack and
all processor registers and is associated with the lock entry in the per cord list of locks.
The algorithm then tries (non-blocking trylock) to acquire the requested lock L. If the
acquisition succeeds, it inserts L into the holding hash table and the per cord lock
list and returns. If the lock acquisition of L fails, the algorithm finds the cord C that
owns L and checks if C is waiting on another lock M. If C is not waiting on any lock,
there is no cycle and the deadlock detection algorithm inserts L into the waiting hash
table and attempts to acquire L through a blocking lock acquisition. If C is waiting
on another lock M, we find the cord that owns M and check to see if it is waiting on
another lock and so on. Essentially, this algorithm implements a traversal of a waits-
for-graph to detect a cycle. A deadlock is detected if the traversal encounters an entry
in the holding hash table with the cord id of the cord running the deadlock detection
algorithm. The corresponding lock identifier in the holding hash table is chosen as the
victim. Since each thread can at most wait on one lock, the depth of traversal of the
deadlock detection algorithm is equal to the number of nodes in the waits-for graph.
By representing the graph (holding and waiting sets) using hash tables, our deadlock
detection algorithm has a time complexity upper bound of O(n), where n is the number
of cords.

Note that in Line 39 of Algorithm 1 the blocking lock acquisition of the lock L is not
protected by a secondary lock (doing so would result in serialization of all locks in the
program) in this algorithm and hence the initial non blocking trylock may fail, and
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ALGORITHM 1: Deadlock Free Lock (lock L)
1: Inputs: lock L
2:

3: /* Global data structures */
4: holding hash table ( lock ←key, pid←value )
5: waiting hash table ( pid←key, lock ←value )
6: lock list := list of locks ordered by program order acquisition of locks.
7:

8: /* Local data structures */
9: lock S /* globally shared lock across cords */

10: lock W /* local lock identifier */
11:

12: R := Restore point containing the contents of stack frame and processor registers.
13: Set restore point R for lock (L) on rollback.
14: if (returning from a restore point flag is true) then
15: Restore the stack.
16: Free the old stack context and reset returning from restore point flag.
17: end if
18: id⇐my pid
19: Acquire lock (S) /* enter runtime’s critical section */
20: Try acquiring lock (L)
21: if (lock (L) is acquired successfully) then
22: Insert in holding hash table (lock (L), id)
23: Insert (lock (L), restore point (R)) at tail of lock list
24: Release lock (S) /* exit runtime’s critical section */
25: else
26: Insert id in waiting hash table (id, lock (L))
27: W ⇐L
28: Traverse:
29: candidate⇐find lock (W) in holding hash table
30: if ( candidate == id ) then
31: recover from deadlock (W) /* we have a deadlock !!! */
32: return to restore point (W)
33: else
34: W ⇐lock that candidate is waiting on
35: if ( lock (W) is valid ) then
36: goto Traverse /* continue traversing the waits for graph */
37: else
38: Release lock (S) /* exit runtime’s critical section */
39: Acquire lock (L)
40: Acquire lock (S) /* enter runtime’s critical section */
41: Delete ids entries from waiting hash table
42: if (lock(L) is acquired successfully) then
43: Insert lock (L) in holding hash table (lock (L), id)
44: Insert (lock (L), restore point (R)) at tail of lock list
45: Release lock (S) /* exit runtime’s critical section */
46: else
47: Release lock (S) /* error in acquiring the Lock (L) */
48: Throw error and terminate program
49: end if
50: end if
51: end if
52: end if
53: Update internal data structures and return
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ALGORITHM 2: Deadlock Recovery
1: Input: lock W
2: /* Global data structures */
3: holding hash table ( lock ←key, pid←value )
4: waiting hash table ( pid←key, lock ←value )
5: lock list := list of locks ordered by program order acquisition of locks.
6:

7: for all entries starting from head of the lock list find the first occurrence of lock (W) and
do

8: Discard all the modifications made by locks from lock (W) to tail of lock list
9: Release all locks including lock (W)

10: Clear relevant entries from holding hash table including entries for lock (W)
11: Release lock(S) /* exit runtime’s critical section */
12: end for
13: return

yet the holding hash table may not have an entry for the owning cord. This condition
(an intentional benign race) cannot result in a deadlock. The intuition behind this
reasoning is that while there may be multiple cords waiting on the same lock, the cord
that acquires the lock successfully is no longer waiting on any lock and hence cannot
be part of a cycle.

3.3.1. Minor Optimization. Sammati employs a conservative approach to detect dead-
locks by running its deadlock detection algorithm at every lock acquisition in the pro-
gram. Additionally, Sammati serializes accesses to waiting and holding sets to preserve
correctness of the waits-for graph. Such serialization imposed at every lock acquisition
by a thread has a significant impact on the runtime performance of an application.

In this extension of Sammati, we implement a more relaxed approach while guaran-
teeing the same determinism in detecting and recovering from a deadlock. A necessary
condition for a cycle to arise is that a thread has to hold one or more locks and be wait-
ing on one or more locks. Our observation here is that a deadlock cannot occur when a
thread attempts to acquire the first lock protecting a critical section, since in this case,
the thread does not hold any prior locks. We use this observation to avoid running the
deadlock detection and recovery algorithm on the acquisition of the first lock.

3.4. Deadlock Recovery
The deadlock detection algorithm presented above detects a deadlock and identifies a
lock W as the victim for deadlock recovery. Recall that Sammati’s runtime system saves
a thread’s execution context (setjmp) and its current stack frame prior to the thread’s
lock acquisition and maintains a list of locks acquired by a thread in program order.
The deadlock recovery algorithm scans the list of locks to find the oldest acquisition
of W, in program order and uses its associated recovery point (execution context and
stack frame) from the lock list for recovery. To recover from the deadlock we (a) discard
all memory updates performed by locks in the lock list including and after W (i.e. locks
acquired later in program order after W), (b) release all locks in the lock list acquired
after W and including W, (c) remove the locks released in step (b) from the holding
hash table and finally restoring the stack and processor registers from the recovery
point for W, which transfers control (longjmp) back to deadlock free lock acquisition of
the victim lock W.

Note that deadlock recovery uses the recovery point from the oldest (in program
order) acquisition of lock W. The reasoning behind this is subtle. Consider the example
shown in Figure 6. A cord C acquires a lock L1, followed by lock L2 and updates a
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a = 0;

Acquire (L1);
    ...
    Acquire (L2);
        a++;
    Release (L2);
    ...
    Acquire (L2);
        Acquire (L3); 

Fig. 6. In this example, if the acquisition of L3 results in a deadlock and the victim was L2,
Sammati’s deadlock recovery rolls back to the earliest acquisition of L2.

variable a. It then releases lock L2, reacquires L2 and acquires another lock L3. The
acquisition of L3 results in a deadlock and the deadlock recovery algorithm selects L2
as the victim for rollback. However, if we rolled back to the most recent acquisition of
L2 and released L2, thereby breaking the deadlock, the earlier update to variable a
within L2 would still be privatized and not visible externally. A cord M waiting on L2
can now acquire L2 and change the value of variable a, creating an illegal write-write
conflict with the privatized copy within cord C.

3.4.1. Garbage Collection and Memory Management. Recovery involves unrolling memory
allocations, Sammati is capable of performing garbage collection while recovering from
deadlocks. Memory management operations can be classified into allocation and deal-
location operations. To handle allocation operations, we maintain a list of allocation
operations that occur within a nested lock scope. This list is used to garbage collect
the allocations if a lock in the nested lock scope is chosen as the victim for deadlock
recovery. Deallocation operations will be buffered (delayed deallocation) until the re-
lease of all locks in a nested lock scope. To preserve transparency Sammati overloads
the standard POSIX memory management primitives including malloc, calloc, realloc,
valloc, and, free and the POSIX thread (Pthread) library. Sammati performs deadlock
aware garbage collection while recovering from a deadlock. It tracks all memory allo-
cations made within a critical section. On recovery, Sammati internally frees all such
allocations to prevent memory leaks.

3.4.2. Irrevocable disk and network I/O. While Sammati transparently eliminates mem-
ory side effects, non-idempotent operations such as memory management and I/O
within a critical section pose additional challenges for recovery from concurrency bugs.
Handling arbitrary non-idempotent I/O within the context of a restartable critical sec-
tion is an open problem. Consider a critical section that contains a network write
operation requesting a remote procedure invocation, followed by a read operation to
get the results. To ensure restartability, if the write operation is delayed till the end
of the critical section, the subsequent read operation will cause a self-deadlock. This
problem exists in transactional memory systems as well and is quite serious, since it
precludes atomic transactions from containing arbitrary non-idempotent network I/O.
While techniques have been used to speculate on the read, to our knowledge, there is
no known exact solution that does not require both ends of the network communication
to be involved in the recovery. Sammati does not support recovery in the presence of
network I/O.

To support disk I/O, Sammati overloads all disk I/O primitives including read, write,
fread, fwrite etc., among others and it performs ordinary (non-lock context) I/O op-
erations as they would otherwise since they cannot result in deadlocks. For instance
threads 1 and 2 shown in Figure 7 (a) perform I/O concurrently. Similarly, Sammati
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(a)

Non-lock context 
I/O operations 
happen as they 
would otherwise, 
i.e., Sammati does 
not enforce any 
serialization 

Thread-1

  ...
  I/O operation
  ...
  ...

Thread-2

  ...
  I/O operation
  ...
  ...

(b)

Thread-1

  ...
  I/O operation
  ...
  ...

Thread-2

  Acquire (L1);
   ...
   I/O operation
   ...
  Release (L1);

Sammati serializes 
only lock context I/O 
operations across 
threads. Since, 
Thread-1 performs 
ordinary I/O and that 
it cannot involve in a 
deadlock with 
Thread-2, Sammati 
does not serialize I/O 
between Thread-1 
and Thread-2. 

(c)

Thread-1 is forced 
to rollback its  
program state to a 
call to acquisition 
of L2.

Thread-1

 Acquire (L2)
  ...
  ...
  I/O operation

Thread-2

  Acquire (L1)
   ...
   I/O operation
   ...
   Acquire (L2)
    ...
   Release (L2)
   ...
  Release (L1);

1 2

3

5
4

Thread-2 remains 
in I/O context until 
the release of its 
outermost critical 
section i.e., L1. 

(d)

Thread-1

 Acquire (L2)
  ...
  ...
 Acquire (L1)

Thread-2

  Acquire (L1)
   ...
   I/O operation
   ...
   Acquire (L2)

2

4

1

3

5

On deadlock, 
Sammati forces 
thread-1 to rollback 
instead of thread-2, 
since thread-2 
performed an I/O 
operation 

(wait)

Fig. 7. Support for I/O.

does not serialize an I/O operation that happen between a lock context and an ordinary
region. For instance, as shown in Figure 7 (b), Thread-1 which does not acquire any
locks cannot result in a deadlock with Thread-2, hence, Sammati can safely perform
I/O operations of threads 1 and 2 concurrently.

Sammati employs a conservative strategy to support I/O operations and prevents
multiple threads from performing I/O within critical sections. If a deadlock arises be-
tween two threads that both performed I/O then it would be impossible to rollback
either of them. Hence, Sammati allows only one thread to perform an I/O operation
within a lock context. We refer to such a thread being in an I/O context. A thread re-
mains in an I/O context until it releases its outmost critical section. Sammati does not
allow any other concurrently executing thread to perform an I/O operation within a
lock context until a thread exits its I/O context.

Consider the example shown in Figure 7 (c). Thread-2 first (in program order) per-
forms I/O operation in a lock context (after acquiring L1). Hence, it enters the I/O
context and remains in I/O context until it releases L1 (outermost lock), consequently,
when Thread-1 attempts to perform an I/O operation it will wait until Thread-2 re-
linquishes its I/O context. Such a serialization could result in an implicit deadlock.
For instance, Thread-2 on acquisition of L2, detects a deadlock between Thread-1 and
Thread-2 since Thread-1 is waiting for thread-2 to exit the I/O context while Thread-
2 will wait for Thread-1 to release L1. To recover from deadlock, Sammati forces the
thread that did not perform an I/O operation, i.e., Thread-1 to rollback to acquisition
of L2. This ensures Thread-2 to make progress. In Figure 7 (d) we present an example
of an explicit deadlock involving Threads 1 and 2. Sammati forces Thread-1 (non-I/O
context) to rollback instead of Thread-2, thus biasing the deadlock recovery algorithm
to selecting victims that have not issued I/O.
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4. PURE RUNTIME APPROACH
In this section we describe the key elements and implementation details of Sammati’s
runtime system.

4.1. Overview
We implemented Sammati’s runtime as a shared library and that is pre-loaded by
the dynamic linker (ld) before executing the binary. Sammati implements most of
the POSIX threads interface, including thread creation, destruction, mutual exclusion
locks, barriers and, condition variables.

4.2. Shared Address Space
A multi-threaded process has a shared address space, with a distinct stack and a dis-
tinct thread-local storage (TLS) region for each thread. To provide efficient address
space isolation and containment of memory updates (described in Section 3.1) Sam-
mati creates an illusion of a shared address space among processes. Sammati overloads
POSIX thread create (pthread create) call to create a cord.

4.2.1. Global Data. The constructor in Sammati’s runtime system traverses the link
map of the application ELF binary at runtime and identifies the zero initialized and
un-initialized data in the .bss section and the non-zero initialized data in the .data
section. Sammati then unmaps these sections from the loaded binary and maps them
from a SYSV memory mapped shared memory file and reinitializes the sections to the
original values. This mapping to a shared memory file is done by the main process
before its execution begins at main. Since cords are implemented as processes that are
forked at thread creation (we actually use the clone() system call in Linux to ensure
that file mappings are shared as well), a copy of the address space of the parent is cre-
ated for each cord and consequently the cords inherit the shared global data mapping.
Any modifications made by any cord to global data is immediately visible to all cords.

4.2.2. Heap. In a multithread process the heap is also shared among all threads of a
process. To implement this abstraction, we modified Doug Lea’s [Doug Lea 2012] dl-
malloc allocator to operate over shared memory mappings. This memory allocator in-
ternally allocates 16 MB chunks (the allocator’s internal granularity), which are then
used to satisfy individual memory requests. Each 16MB chunk is backed by a shared
memory file mapping and is visible to all cords. Sammati provides global heap alloca-
tion by sharing memory management metadata among cords using the same shared
memory backing mechanism used for .data and .bss sections described in Section 4.2.1.
Similar to the semantics of memory allocation for threads, any cord can allocate mem-
ory that is visible and usable by any other cord. When a cord first allocates memory, the
memory addresses are allocated in its virtual address space and backed by a shared
memory file. If any other cord accesses this memory, it results in a segmentation vio-
lation (a map error) since the address does not exist in its address space. Sammati’s
runtime handles this segmentation violation by consulting the memory management
metadata to check if the reference is to a valid memory address allocated by a different
cord. If so, it maps the shared memory file associated with the memory thereby making
it available. Note that such an access fault only occurs on the first access to a memory
region allocated by a different cord, and is conceptually similar to lazy memory alloca-
tion within an operating system. To further minimize such faults, we map the entire
16MB chunk that surrounds the faulting memory address. Sammati exposes dynamic
memory management through the standard POSIX memory management primitives
including malloc, calloc, realloc, valloc and free.
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Acquire (L1)
W (2)
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W(x): Write to page xprivate and
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Fig. 8. (left) Illustrates the virtual memory address (VMA) layout of each process (cord). Sam-
mati provides memory isolation by transforming threads to processes and uses shared memory
objects and memory mapped files to share global variables and the process heap among cords.
(right) Illustrates how the VMA is manipulated by Sammati with a simple example explained
in text.

4.2.3. Stack. Since stacks are local to each thread, Sammati does not share stacks
among cords. Each cord has a default stack of 8MB similar to threads. The stack is
created at cord creation and it is freed automatically when a cord terminates.

4.2.4. Shared view of Runtime System. In UNIX process semantics, each process has its
own copy of the data segment of the shared libraries. Consequently, Sammati’s run-
time is not shared among cords by default. To circumvent this issue and to maintain a
shared view of the runtime, each newly created cord automatically executes an initial-
ization routine that maps the shared state of Sammati’s runtime prior to executing its
thread start function. Figure 8 illustrates the virtual address space layout of a cord.

4.3. Detecting Memory Updates Within Critical Sections
To successfully rollback on deadlock, the runtime system must precisely identify mem-
ory updates performed within critical sections. We define two contexts of execution for
a cord; a cord is said to be in a lock context if it acquires a lock and it remains in the
lock context until it releases the lock. In case of nested locks, a thread remains in lock
context until all the locks it acquired previously are released.

4.3.1. Address Space Protection. Sammati’s runtime employs address space protection
to write-protect (PROT READ) a cord’s virtual memory address (VMA) pages of the
shared address space (global data and heap). If a cord attempts to modify (write to) the
shared data, the runtime system handles the access fault (SEGV ACCERR) and makes
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a note of the page and the current context of execution i.e., the current critical section.
The runtime maintains a unique list of pages that were modified within each critical
section. Read accesses to the shared data do not produce access faults and execute as
they would otherwise. The permissions of the page are then set to read-write so that
the cord can continue its execution. We extend Sammati’s implementation to include
two variants of address space protection.

(1) Variant-1: On entry of a critical section, the runtime system write protects all the
pages of the shared address space (global data and heap). By leveraging the ad-
dress space protection semantics described above, the runtime system precisely
identifies the updates within a lock context. On exit of a critical section, the run-
time system restores the permissions of all the pages of shared address space by
unprotecting them.

(2) Variant-2: As opposed to variant-1, in this approach, the runtime system at the
start of the program execution, write-protects the entire shared VMA. Hence, any
updates to memory outside of the critical section are tracked through access faults.
On a lock acquisition, only the set of pages that were modified prior to acquiring a
lock are write-protected instead of protecting the entire shared VMA. In essence,
this approach tracks the write-set of a cord between lock release and lock acquisi-
tion (ordinary memory accesses) and only write-protects this write-set.

The efficacy of each variant depends on the (a) total size of the memory footprint
and (b) the total number of locks acquired and finally (c) the number of updates per-
formed within a critical section. The choice between the variants is dependent on these
characteristics of the applications.

4.4. Isolating Memory Updates
Since all pages in the shared VMA are write protected, when a cord modifies a shared
VMA page from within a lock context, it is detected by the occurrence of a segmentation
violation (access error). Sammati’s runtime handles the access violation and isolates
the updates by remapping the faulting page from the shared memory (MAP SHARED)
backing to private (MAP PRIVATE) mode. In the private mode, updates to the page
from the cord in the lock context are no longer visible to other cords, effectively pri-
vatizing the page. Sammati’s runtime then creates a copy of the page (called a twin
page), changes the page permission to read/write and returns from the segmentation
violation handler allowing the cord to continue its execution. The twin page is used to
detect the actual memory updates on the page, which are then committed when the
cord exits a lock context. We note that the space overhead of this approach is O(W),
where W is the write set (in pages) within a lock context.

4.4.1. Weak Atomicity. Intuitively, Sammati implements a lazy privatization scheme
that defers privatization to the instant when the first memory update occurs. We note
that such a lazy privatization results in weak atomicity [Colin Blundell and Milo 2006].
While a conservative privatization of the entire address space at the acquisition of the
first lock in a nested lock sequence results in strong atomicity – this was in fact our
original solution, the measured runtime costs of this approach were far too high for
applications with fine-grain locks. Since standard lock semantics of mutual exclusion
locks do not require strong atomicity, we chose to implement the more efficient, lazy
privatization approach and its resultant weak atomicity.

4.5. Preserving Synchronization Semantics
Sammati’s runtime preserves the synchronization semantics of multi-threaded
codes among cords (recall, implemented as processes) by transforming all
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Virtual Memory Address

page (P)

0x1000 0x1FFF
2 ...

&a

a L2'

&L2

low address (write protected), privatized on demand (read-write)

high address, shared (read-write)

1

...
Acquire (L1); 
   a++;
   Acquire (L2);
   ...
   Release (L2);
Release(L1);

Cord C

int a=1;
pthread_mutex_t L1, L2;

page P is privatized, 
on update to 'a', 
thus privatizing 'L2', 
thus breaking the 
mutual exclusion 
semantics on L2

Assume 'a', 'L1', 
'L2' are on page P

runtime system 
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L2⇒L2' to 
circumvent 
privatization issues

3
2

0x200000001000
1 ...

&a'

a' L2'

&L2'

0x200000001FFF

...

Fig. 9. Subtle issues with privatization

mutex exclusion locks (pthread mutex t), barriers (pthread barrier t), con-
dition variables (pthread cond t) within the program to process-shared
(PTHREAD PROCESS SHARED) locks, which enables their use among cords.

Recall that in case of nested locks, a cord remains in lock context until all the locks
it acquired previously are released. On unlock, Sammati marks a lock for release but
defers the actual release of the lock until all locks in the nested lock sequence have
been released in program order (discussed in Section 3.2).

A subtle side effect of memory isolation through privatization (discussed in Sec-
tion 4.4) occurs because synchronization primitives such as locks, barriers and con-
dition variables in a multi-threaded program are generally global i.e., they reside in
the shared VMA irrespective of how they are initialized (globals–statically declared
or heap–dynamically allocated). For instance consider the example illustrated in Fig-
ure 9 involving a mutex lock. If a cord C acquires a lock and subsequently modifies
a page P, P is privatized. If P contains any definitions of lock variables (which may
happen if P contains parts of the .data section), they end up being privatized as well.
If such a privatized lock is subsequently used in a nested lock sequence by cord C, it no
longer provides mutual exclusion outside cord C since any updates to the lock (such as
acquisition/release) are privatized and not visible outside C. A simple solution to this
problem would have been to modify the application source code to allocate memory for
all mutual exclusion locks from a distinct shared memory zone that is not subject to
privatization. However, this requires source code modifications and conflicts with our
goal of being a transparent runtime solution to deadlock recovery.

To address this side effect of address space privatization, we present a novel ap-
proach that leverages the large virtual memory address (VMA) provided by 64-bit op-
erating systems. Linux allows 48 bits of addressable virtual memory on x86-64 archi-
tectures and we exploit this aspect of large addressable VMA available to a process.
Recall that our runtime system maps globals and heap (described in Section 4.2) using
shared memory objects and memory mapped files. Using the same shared memory ob-
jects and memory mapped file, Sammati creates an identical secondary mapping of the
global data sections and heap at a high address (45th bit set) in the VMA of each cord.
The application is unaware of this mapping, and performs its accesses (reads/writes) at
the original low address space. In effect, the high address mapping creates a shadow
address space for all shared program data and modifications (unless privatized) are
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visible in both address spaces (shown in Figure 8). The high address space shadow is
always shared among cords and it is never privatized.

To perform synchronization operations (e.g. mutual exclusion such as in Figure 9),
Sammati at runtime transforms the address of a mutual exclusion lock by setting the
high address bit and performs the lock operation in the shadow address space. Since
the shadow address space is not subject to privatization, lock acquisitions and releases
are visible across all cords, correctly implementing mutual exclusion.

4.6. Committing Memory Updates
When a cord exits a lock context, any of its updates contained in its privatized data
must be made visible and reconciled with other cords. In order to perform this inclu-
sion, we need to identify the exact write set of the lock context. Hence, for every page
modified within a lock context, we compute an XOR difference (byte wise XOR) be-
tween the privatized version of the page and its copy (twin) that was saved before any
modifications were made within the lock context. The XOR difference identifies the
exact bytes that were changed. Distributed shared memory (DSM) systems (Tread-
Marks [Amza et al. 1996]) employ the twin/diff technique for identifying false sharing.
Inspired by such systems we leverage this technique to efficiently track the updates.

To perform inclusion, we apply the XOR difference to the high address shadow region
of the VMA (shown in Figure 8) by computing the XOR of the difference and the high
memory page, which makes the updates visible to all cords. Sammati then reverts the
privatization by discarding the privatized pages and remapping their shared versions.

We note that since the semantics of mutual exclusion locks prevent two cords from
modifying the same data under different locks, updates from concurrent lock releases
would be to different regions within a memory page. Hence the operation of applying
XOR differences to the shadow address space is a commutative operation and is thus
implemented as a concurrent operation. If the original program contains data races,
Sammati preserves the race. We explain how Sammati is capable of detecting write-
write races in Section 4.8.

We present a simple example to illustrate how Sammati manipulates the VMA of
each cord while providing isolation, privatization and inclusion. Consider the scenario
as shown in Figure 8 where a thread has four shared pages when it started its exe-
cution. Initially, all the shared pages (1, 2, 3, 4) are write-protected. When a thread
attempts to write to pages outside a lock context, the pages (1, 2) are then given write
access. On entering a lock context, only pages that were modified previously are write-
protected (pages 1, 2). If a thread attempts to write to a page (2) within a lock context,
the page is privatized (lazy privatization) and a copy of it is created (twin). Before ex-
iting a lock context, the runtime system evaluates the modifications by computing an
XOR difference of the private page against its twin. It then checks for any write-write
races before applying difference to the page in the shared high-address space.

4.7. Condition Variables and Semaphores
POSIX condition variables provide a synchronization primitive that enables a thread
to atomically release a lock and wait on a condition to be signaled. More than one
thread is permitted to wait on the same condition signal. On receiving a condition sig-
nal, one of the waiting threads atomically reacquires the lock and resumes execution.
To implement condition wait or semaphore semantics, Sammati overloads the wait
primitive and treats it as a commit point, i.e., we perform inclusion as if the enclosing
lock were being unlocked (including making all updates within the critical section vis-
ible) and then call the underlying POSIX condition wait to perform the operation. We
employ a similar strategy to handle the signal primitive if it is protected by a lock i.e.,
called within a lock context. When another thread in the application signals the condi-
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cond_variable CV;
lock_variable L1;

int a = 0, b =0;

Acquire (L1);
    ...
    a++;
    cond_wait (CV, L1);
    b++;
    ...
Release (L1);

on return from 
condition wait, L1 
is implicitly 
acquired, any  
successive 
updates are not 
privatized

update to 'a' 
is privatized

privatized updates 
are propagated on 
cond_wait as if there 
were an implicit 
release of L1  

Fig. 10. Condition Variables

tion, a thread waiting on it atomically reacquires the lock, since it is simply using the
underlying condition wait call. On resuming execution from a condition wait, a thread
(cord) treats the resumption as a new lock acquisition (shown in Figure 10), however
it does not privatize any updates (variable b in Figure 10).

Sammati offers limited support for recovery in the presence of condition wait/signal
primitives protected by more than one lock. Recall to preserve the semantics of condi-
tion variables, Sammati propagates the updates (in program order) performed prior to
wait/signal operation. Such semantics conflict with the privatization mechanism (dis-
cussed in Section 3.1) required to facilitate recovery, consequently Sammati while it is
capable of detecting deadlocks in the presence of condition variables in nested locks, it
is incapable of recovering deadlocks if they involve rolling back asynchronous events
such as condition wait/signals.

4.8. Detecting Write-Write Races
Sammati can detect and report write-write races that occur between (a) guarded and
concurrent unguarded updates to a shared value and (b) improperly guarded updates,
where a single data value is guarded by two or more different locks. Sammati identifies
these data races while committing the updates to memory (Section 4.6) by checking
every word in the diff page. If the word is non-zero, then it indicates that the cord has
modified data within a lock context. Sammati then compares the word corresponding
to the non-zero value in its twin with its equivalent in the shadow address space that
is shared across all cords. In essence this comparison checks to see if some other cord
executing concurrently has modified a word that should have been uniquely protected
by the current lock context. If the two values are not equal then this indicates that
the same word was modified within the current lock context as well as by one or more
cords.

We note Sammati does not detect data races that might potentially happen, instead
it precisely identifies data races that happened during the execution. Additionally,
since Sammati detects the race at inclusion, it does not have enough information to
identify all the cords involved and/or caused the conict.

5. EXPERIMENTAL EVALUATION
We evaluated Sammati’s runtime performance using two POSIX threaded benchmark
suites (SPLASH [SPLASH-2 2012], Phoenix [Ranger et al. 2007]), several synthetic
benchmark suites. The SPLASH suite (described in Table I) contains applications from
several domains including high-performance computing, signal processing, and graph-
ics. We chose to report the results from benchmarks that have (a) a runtime of at least
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Table I. SPLASH Benchmarks

Application Description
Barnes Barnes-Hut algorithm to simulate interaction of a system of bodies (N-body problem)
FMM Fast Multipole Method to simulate interaction of a system of bodies (N-body problem)
Ocean-CP Simulates large-scale ocean movements based on eddy and boundary currents
Water-nsquared Simulates forces and potential energy of water molecules in the liquid state
FFT Computes one-dimensional Fast Fourier Transformations
LU-NCP Factors (2D array) a dense matrix into the product of a lower and upper triangular matrices
LU-CP Factors (array of blocks) a dense matrix into the product of a lower and upper triangular matrices
Radix Performs integer radix sort

Table II. Phoenix Benchmarks

Application Description
Histogram Generates a histogram of frequencies of pixels values (R,G,B) in an image
Kmeans Iteratively performs data clustering of N-dimensional data points
Linear Regression Performs linear approximation of 2D points
Matrix Multiply Computes the product of two matrices
PCA Performs principal component analysis on a matrix

a few seconds to avoid the statistical noise from scheduler and (b) applications that
compiled and run on a 64-bit machine. The Phoenix suite (described in Table II) con-
tains applications from enterprise computing, artificial intelligence, image processing,
and scientific computing domains. The synthetic benchmarks contain programs writ-
ten to create deadlocks both deterministically and randomly, and finally, examples of
deadlocks in literature [Berger et al. 2009; Joshi et al. 2009; Pyla and Varadarajan
2010].

We chose the SPLASH and PHOENIX benchmarks for several reasons. First, their
performance has been well studied in literature. Second, SPLASH was originally in-
tended as a shared memory system benchmark suite akin to SPEC and includes a
variety of applications with different memory models and locking regimes. Third and
most importantly, we note that the lock acquisition rates of some of the applications for
instance, Barnes (640K locks/sec), FMM (265K locks/sec) and Water (70K locks/sec) is
extremely high. We define the lock acquisition rate as the ratio of total locks acquired
by a program to its runtime (runtime of vanilla application). Such extremely high lock
rates stress tests Sammati to the extremes since the lock rate is one of the primary de-
terminant of its overhead. In contrast, enterprise applications such as databases are
largely bound by disk IOP rates of a few hundred to a few thousand per second, which
we believe would lead to lower lock acquisition rates.

5.1. Experimental setup
We performed all our experiments on a 16 core shared memory machine (NUMA) run-
ning Linux 2.6.32 with 64GB of RAM. The test system contains four 2 GHz Quad-Core
AMD Opteron processors. We ran each application under four scenarios, first, we eval-
uated Sammati’s pure runtime approaches i.e., variant-1 –tracks lock context accesses
and variant-2 –tracks ordinary accesses, where we pre-load our runtime system using
LD PRELOAD, second, we ran the vanilla Pthread application and finally, we evalu-
ated an approach based on Sammati’s compile time instrumentation and runtime. For
each scenario, we ran a benchmark 5 times and we present the average of the 5 inde-
pendent runs. We measured the total runtime (wallclock time) for the each application
using the UNIX time command.

5.2. Performance Analysis
We classify the 13 benchmarks from SPLASH and PHOENIX suites into 4 sets based
on the lock acquisition rate of each application. We present a summary of this classi-
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Table III. Classification of SPLASH and PHOENIX benchmark suites based on lock acquisition rate

Category Lock Acquisition Rate Benchmarks
Set 1 50K/sec - 700K/sec Barnes, FMM, and Water-nsquared
Set 2 10/sec - 50K/sec Ocean, Radix, and PCA
Set 3 0.5/sec - 10/sec FFT, LU-contiguous partition, and LU-non contiguous partition
Set 4 0/sec - 0.5/sec Histrogram, Kmeans, Linear Regression, and Matrix Multiply

fication in Table III. For each benchmark we measured several important character-
istics including the number of locks, the lock context write-set, pages write-protected,
pages restored (un-write-protected), pages privatized and shared etc., to understand
the performance implications of using Sammati.

5.2.1. Runtime Overhead. Recall that we presented two approaches (a.k.a variants,
described in Section 4.3) to detect memory updates performed within critical section.
In Variant-1, Sammati tracks the lock context accesses. To accomplish this objective,
Sammati write-protects the entire shared address space on a lock acquisition and
tracks access faults to determine the pages modified within a lock context. Sammati
then creates a copy of the page, privatizes the page to ensure containment of memory
updates. On the release of a lock, Sammati computes the XOR difference to shadow
memory (high address) to propagate the memory updates and maps the page back to
shared state and finally un write-protects the entire shared address space.

OverheadSammati(variant−1) ∝ ( number of locks× [ cost of address space protection +
cost of address space un−protection ]+ write−set×[ cost of observing a write access +
cost of privatization + cost of creating copy + cost of propagating updates +
cost of un− privatizing ])

In variant-2 Sammati tracks ordinary accesses. Sammati’s runtime begins program
execution by write-protecting the entire shared address space. Any consequent
newly allocated memory is also write-protected enabling Sammati to track the pages
modified in ordinary regions through access faults. On a lock acquisition Sammati
write protects the pages modified in ordinary region. Similar to varaint-1, Sammati
tracks the access faults to determine the pages modified in a lock context and creates
a copy of the page, privatizes the page to ensure containment of memory updates. On
the release of a lock, Sammati computes the XOR difference to shadow memory (high
address) to propagate the memory updates and restores the page back to being shared
and write-protected.

OverheadSammati(variant−2) ∝ ( cost of observing ordinary write accesses +
number of locks × [ cost of protecting ordinary accesses ] + write − set ×
[ cost of observing a write access + cost of privatization + cost of creating copy +
cost of propagating updates + cost of un− privatizing ])

5.2.2. Set #1. Figure 11 illustrates the performance of Sammati and Pthreads for ap-
plications in set-1. As shown in Table IV, applications such as Barnes, FMM and Wa-
ter acquire a reasonably large number of locks (≈ 106) and they have extremely high
lock acquisition rate. For instance, Barnes acquires 640K locks/sec and FMM acquires
265K locks/sec and Water acquires 70K/sec for 16 threads. Furthermore, all the three
applications modify a significant amount of data (pages) within a lock context. Barnes
modifies 8.4 × 105 pages, FMM modifies 4.8 × 106 pages and Water modifies 2.4 × 106

pages. Consequently, both the variants of Sammati incur a significant runtime over-
head and result in poor speedup.
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Table IV. Characteristics of applications in Set-1

Benchmark Threads Total Locks Lock Rate Pages Modified in Lock Context
(locks/sec) Total Min Max Avg

Barnes

1 275216 38182.02 843703 1 20 3
2 275222 87095.57 843520 0 39 6
4 275256 195494.32 843822 0 77 12
8 275356 380325.97 843751 0 155 24
16 275494 640683.72 843778 0 308 48

FMM

1 4517437 25156.13 4728864 0 3 1
2 4521269 50409.96 4736848 0 6 2
4 4544061 98004.163 4782361 0 12 4
8 4560144 171382.44 4814982 0 25 8
16 4588580 265297.18 4871931 0 49 16

Water-nsquared

1 266568 588.20 270728 1 2 1
2 533071 2292.68 541391 1 4 2
4 799902 6489.52 812382 1 8 4
8 1333564 21266.80 1354364 1 16 8
16 2400888 70960.81 2438328 1 32 16

Table V. Profile of applications in Set-1 with Sammati (Variant-1)

Benchmark Threads Total Pages
Write-Protected Access faults Map shared Un write-protected

Barnes

1 15155044256 843703 843703 15155044256
2 15156475540 843520 843520 15156475540
4 15160549968 843822 843822 15160549968
8 15148985696 843751 843751 15148985696
16 15231512272 843778 843778 15231512272

Table VI. Profile of applications in Set-1 with Sammati (Variant-2)

Benchmark Threads Total Pages
Write-Protected Access faults Map shared Un write-protected

Barnes

1 277866 1121296 843703 277593
2 286433 1129787 843625 286162
4 298746 1142375 843898 298477
8 317262 1160509 843512 316997
16 353403 1196857 843711 353146

FMM

1 33352821 38138865 4728864 33410001
2 34315248 39161456 4736848 34424608
4 35040077 40000100 4782361 35217739
8 35742953 40854289 4814982 36039307
16 36848173 42243104 4871931 37371173

Water

1 906035 1176764 270728 906036
2 1721148 2262540 541391 1721149
4 3351374 4163757 812382 3351375
8 6611826 7966191 1354364 6611827
16 13132730 15571059 2438328 13132731

Since in variant-1, Sammati write-protects the entire shared address space on every
lock acquisition to detect memory updates within a critical section, and unprotects the
address space on lock release. Sammati incurs a significant runtime overhead due the
address space protection. Barnes write-protects over 3 × 1010 pages. The high costs of
address space protection prevent FMM and Water to make any meaningful progress
resulting in a poor CPU utilization. We set a cutoff limit on the runtime of 20 min,
hence we omit the results of variant-1 for FMM and Water in Table V.

Sammati write-protects and un-write-protects an order magnitude (104) fewer pages
under variant-2. Hence, variant-2 (shown in Figure 11) incurs significantly lesser over-
head compared to variant-1. Recall that in variant-2 all shared data is maintained in
read-only form. When updates to shared data occur outside a lock context, we store
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Fig. 11. Performance of applications from Set-1 (extremely high lock acquisition rate, typically 50K/sec -
700K/sec) with Sammati on a 16 core system.

the page address in a write-set list and change the page permissions to read/write. At
the acquisition of the next lock, we only change the page permissions of pages in the
write-set list to read only, thereby avoiding the cost of write protecting the entire data
space. Variant-2 is biased towards fine-grain locking where the lock context writes is
small (shown in Table VI), which is true for Barnes, FMM and Water.

The write-set in a lock context is invariant in both the variants of Sammati since
the number of pages modified within a lock context is identical for a given problem.
The total number of pages modified in a lock context (shown in Table IV) is identical
to number of pages map shared (shown in Tables V and VI). This indicates that the
overhead due to write-set in both the variants of Sammati is identical. The choice
between variants is determined by the number of ordinary accesses and lock context
accesses. When the write-set between lock contexts is large, the cost of handling the
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Fig. 12. Performance of applications from Set-2 (moderate lock acquisition rate, typically 10 - 50K/sec) with
Sammati on a 16 core system.

access error and changing the page permissions outside lock contexts as in variant-2
incurs more overhead compared to variant-1.

The results from set-1 show that Sammati is capable of performing deadlock detec-
tion and recovery even when subject to extreme conditions.

5.2.3. Set #2. Figure 12 illustrates the performance of Sammati and Pthreads for ap-
plications in set-2. Ocean acquires approximately 2.7K locks, and Radix acquires 200
locks and performs 159 condition signals (shown in Table X), and PCA acquires 10K
locks. The lock acquisition rate (shown in Table VII) is significantly lower compared to
applications in set-1. Consequently, Sammati’s performs relatively well with modest
overhead for most applications in set-2 compared to applications in set-1

Ocean has a reasonably large memory footprint (≈ 14GB) compared to the remaining
benchmarks in set-2, consequently, even though it acquires fewer locks and modifies
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Table VII. Characteristics of applications in Set-2

Benchmark Threads Total Locks Lock Rate Pages Modified in Lock Context
(locks/sec) Total Min Max Avg

Ocean

1 173 0.40 173 1 1 1
2 346 1.56 268 0 2 0.78
4 692 6.29 422 0 4 0.61
8 1384 22.47 331 0 8 0.24
16 2768 66.47 496 0 16 0.18

Radix

1 4 0.03 4 0 1 1
2 17 0.25 15 0 2 1
4 43 1.22 28 0 4 0.65
8 95 5.27 66 0 8 0.7
16 199 20.47 133 0 16 0.67

PCA

1 10001 5.89 10001 1 1 1
2 10002 11.63 10002 1 2 2
4 10004 22.47 10004 1 4 4
8 10008 29.58 10008 1 8 8
16 10016 28.40 10016 1 16 16

Table VIII. Profile of applications in Set-2 with Sammati (Variant-1)

Benchmark Threads Total Pages
Write-Protected Access faults Map shared Un write-protected

Ocean

1 628473535 173 173 628473535
2 1257285458 268 268 1257285458
4 2515604764 422 422 2515604764
8 5034055032 331 331 5034055032
16 10076928912 496 496 10076928912

Radix

1 4210964 4 4 7369187
2 17896597 15 15 29476748
4 45267863 28 28 83166539
8 100010395 66 66 177913229
16 209495459 133 133 376881278

PCA

1 1966286609 10001 10001 1966286609
2 1966483218 10002 10002 1966483218
4 1966876436 10004 10004 1966876436
8 1967662872 10008 10008 1967662872
16 1969235744 10016 10016 1969235744

Table IX. Profile of applications in Set-2 with Sammati (Variant-2)

Benchmark Threads Total Pages
Write-Protected Access faults Map shared Un write-protected

Ocean

1 34004498 35053769 173 35053596
2 34012951 35062312 255 35062057
4 34611493 35661236 365 35660871
8 34629415 35679417 592 35678825
16 35326938 36377572 648 36376924

Radix

1 1572987 2097221 4 2097217
2 1575085 2099823 13 2099810
4 1577260 2102520 31 2102489
8 1581628 2107920 59 2107861
16 1590355 2118721 122 2118599

PCA

1 50053311 50063312 10001 50053311
2 50053311 50063313 10002 50053311
4 50053311 50063315 10004 50053311
8 50053311 50063319 10004 50053311
16 50053311 50063327 10016 50053311
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Table X. Profile of POSIX condition
variables (signals/waits) in Radix.

Threads Condition Variables
1 3
2 11
4 36
8 74
16 159

very little data (≈ 500 pages for 16 threads) under lock context, however it incurs a
noticeable reduction in speedup due to the cost of address space protection and un-
protection. Ocean accesses a significant amount of data (≈ 3.7× 107 pages) outside the
lock context and only a few hundred pages within a lock context. Since variant-2 tracks
(page granularity) ordinary accesses, it incurs more overhead compared to variant-1.

Sammati’s variant-1 on an average write-protects and un-write-protects approxi-
mately twice the number of pages with increasing threads in Ocean, for example,
1× 1010 with 8 threads and 2× 1010 pages for 16 threads. Hence, we find variant-1 in-
curs a performance overhead compared to native pthread execution as we increase the
number of threads. This runtime cost of address space protection precludes variant-1
from scaling with increasing number of threads and consequently results a reduction
in speedup.

Radix uses condition signals (shown in Table X) and recall that Sammati propagates
the lock context memory updates prior (in program order) to performing the actual con-
dition signal/wait operation. The runtime performance of variant-1 for Radix is compa-
rable to native pthread execution. Radix performs several (≈ 104) orders of magnitude
higher number of ordinary accesses (writes) over lock context writes, consecutively,
variant-2 incurs more overhead than variant-1.

The performance of variant-1 for PCA is identical to native pthread execution and
the performance of variant-2 is comparable to native thread execution and variant-1.
Similar to Radix, PCA has a relatively low write-set (10016 pages) and acquires fewer
locks with low lock acquisition rate. The number of ordinary accesses (≈ 5× 107), lock
context access(10016 pages), and the number of pages write-protected(≈ 1.9×109 pages)
remain constant with increasing number of threads as shown in Tables VIII and IX.
Consequently, both variants of Sammati scale well.

5.2.4. Set #3. The performance of applications in set-3 as shown in Figure 13 is com-
parable to native pthread execution. LU-CP and LU-NCP have relatively low number
of ordinary accesses and lock context accesses (shown in Tables XII and XIII), thus,
significantly reducing the overall cost of address space protection. Additionally, these
applications also acquire few locks and have a significantly low lock acquisition rate
(shown in Table XI) compared to applications from set1 and set2, thus resulting in triv-
ial runtime overhead. The number of pages write-protected and un-write-protected in
variant-1 and variant-2 are identical for LU and LU-NCP, hence, they have similar
performance characteristics compared to native thread execution.

FFT has a slightly higher runtime overhead compared to LU-CP and LU-NCP and
its overall performance is comparable to native thread execution. The overhead stems
from the additional cost of address space protection. Sammati write-protects and un-
write-protects approximately 2 and 3 orders of magnitude more pages than LU-CP and
LU-NCP in variants 1 and 2 respectively.

5.2.5. Set #4. Figure 14 illustrates the performance of Sammati and Pthreads for ap-
plications in set-4. The applications in set-4 do no acquire any locks, we nevertheless
use these benchmarks in our experimental analysis to measure the overhead of our
cords infrastructure (described in Section 4). The results show that performance of
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Table XI. Characteristics of applications in Set-3

Benchmark Threads Total Locks Lock Rate Pages Modified in Lock Context
(locks/sec) Total Min Max Avg

FFT

1 1 0.02 1 1 1 1
2 2 0.06 2 1 2 2
4 4 0.16 4 1 4 4
8 8 0.37 8 1 8 8
16 16 0.78 16 1 16 16

LU-CP

1 1 0.01 1 1 1 1
2 2 0.05 2 1 2 2
4 4 0.19 4 1 4 4
8 8 0.68 8 1 8 8
16 16 2.01 16 1 16 16

LU-NCP

1 1 0.01 1 1 1 1
2 2 0.03 2 1 2 2
4 4 0.12 4 1 4 4
8 8 0.44 8 1 8 8
16 16 1.50 16 1 16 16

Table XII. Profile of applications in Set-3 with Sammati (Variant-1)

Benchmark Threads Total Pages
Write-Protected Access faults Map shared Un write-protected

FFT

1 790634 1 1 790634
2 1581268 2 2 1581268
4 3162536 4 4 3162536
8 6325072 8 8 6325072
16 12650144 16 16 12650144

LU-CP

1 36867 1 1 36867
2 73738 2 2 73738
4 147492 4 4 147492
8 295048 8 8 295048
16 557552 16 16 557552

LU-NCP

1 36865 1 1 36865
2 73730 2 2 73730
4 147460 4 4 147460
8 294920 8 8 294920
16 589840 16 16 589840

Table XIII. Profile of applications in Set-3 with Sammati (Variant-2)

Benchmark Threads Total Pages
Write-Protected Access faults Map shared Un write-protected

FFT

1 524397 1048785 1 1048784
2 524397 1048821 2 1048819
4 524397 1048888 4 1048884
8 524397 1049024 8 1049016
16 524397 1049296 16 1049280

LU-CP

1 32918 65695 1 65694
2 32920 82149 2 82147
4 32924 91174 4 91170
8 32932 97200 8 97192
16 32947 103154 16 103138

LU-NCP

1 32787 65555 1 65554
2 32787 98317 2 98315
4 32787 163841 4 163837
8 32787 294889 8 294881
16 32787 556985 16 556969
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Fig. 13. Performance of applications from Set-3 (low lock acquisition rate, typically 0.5 - 10/sec) with Sam-
mati on a 16 core system.

Sammati’s cords incurs no performance overhead and Sammati’s performance is com-
parable to native thread execution.

5.2.6. Memory Overhead. Sammati’s memory overhead stems from Sammati’s meta-
data and the transient memory overhead due to privatization of memory updates.

Memory OverheadSammati = Sammati′s metadata + write − set ×
cost of privatization ( creating copy )

Sammati’s metadata is relatively small at approximately 1 − 2 MB independent of
the number of cords. The privatization memory overhead is incurred when the appli-
cation is in a critical section discussed in Section 4.4. This overhead is caused by the
Sammati’s runtime maintaining twin copies of the page, which are then used to com-
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Fig. 14. Performance of applications from Set-4 (extremely low lock acquisition rate, typically 0 - 0.5/sec)
with Sammati on a 16 core system.
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pute the XOR differences during inclusion. Note that the twin pages are freed at the
end of the critical section, i.e., hence this memory overhead is transient. The memory
footprint of the twin pages is proportional to the write-set in pages within a critical
section. In principle, this is similar to the memory overhead of software transactional
memory systems, except that Sammati operate at page granularity. To quantify this
overhead, we measured the minimum, maximum and average number of twin pages
within any critical section, which yields the upper bound on the transient memory
overhead of Sammati. We present this information in Tables IV, VII and XI.

A majority of the applications including Ocean, Radix, PCA, FFT, LU-CP and LU-
NCP modified only a few pages within any given critical section and the sum of the
maximum number of twin pages for all cords was ≈ 16 pages. Barnes, FMM, and Wa-
ter of set-1 modified 308, 49, 32 pages respectively for 16 cords. Consecutively, Barnes
incurred the highest memory overhead of 1.203 MB (308 × 4K) of memory, and FMM
incurred a memory overhead of 196 K (49× 4K) and Water incurred an overhead of 128
K (32× 4K).

5.3. Deadlock Detection and Recovery
We created a synthetic benchmark suite that contained programs that are prone to
deadlocks. We designed these programs to deterministically, and randomly deadlock
during the course of their execution. Additionally, we subjected Sammati to synthetic
programs containing examples of deadlocks taken from existing literature includ-
ing [Pyla and Varadarajan 2010; Berger et al. 2009; Joshi et al. 2009; Joshi et al.
2010; Xiong et al. 2010]. In Figure 19 we present a few examples from our synthetic
benchmark suite. In the first example, two threads (shown in Figure 19(a)) acquire
locks (L1 and L2) in different orders that could potentially result in a cyclic depen-
dency among threads depending on the ordering of the threads. In order to induce a
deadlock, we added a sleep statement to thread 1 after the acquisition of lock L1. This
resulted in a deterministic deadlock among the two threads. In Figure 19(b)) we illus-
trate a more complex example involving a cyclic dependency of lock acquisition among
multiple threads. The native pthreads program hangs on such deadlocks. Sammati de-
tects such deadlocks, recovers from them transparently and executes the program to
completion.

5.4. Summary
The experimental results indicate that Sammati is capable of handling applications
that employ extreme fine-grain locking (e.g., 640K/sec for Barnes, 265K/sec for FMM,
and finally 70K/sec for Water). On the whole while Sammati performs reasonably well
across the spectrum of applications from the SPLASH and Phoenix suites, we find that
address space protection, and privatization costs primarily contribute to Sammati’s
runtime overhead.

The performance of Sammati’s cords is almost identical to the performance of native
pthreads applications and incurs no overhead. We show that is possible to efficiently
design and implement a runtime system that is capable of transparently detecting and
recovering from deadlocks.

6. LIMITATIONS OF PURE RUNTIME APPROACH
While Sammati’s pure runtime approach can deterministically and transparently de-
tecting deadlocks, it has limitations on recovering from deadlocks involving Thread-
Local Storage (TLS) data transparently and efficiently while ensuring portability.

6.0.1. Thread-Local Storage (TLS). The original prototype of Sammati [Pyla and
Varadarajan 2010] does not recover TLS data in the event of a deadlock. We briefly dis-
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cuss the semantics of TLS data (denoted by thread in type information of a variable)
to explain how we extend Sammati to include support for TLS. In programs that em-
ploy TLS data, the dynamic linker, ld, allocates the zero initialized and un-initialized
data in the .tbss section and the non-zero initialized data in the .tdata sections respec-
tively in the object file (.o). The ld creates an initial image of the TLS data (.tdata and
.tbss) prior to the program execution starting at main and passes a copy of this image
to each thread. In the presence of shared libraries (.so), the image is created when the
shared library is loaded by the loader (lazy binding). Each thread receives a copy of
the saved TLS state and any updates to the TLS are local to each thread.

To successfully recover from a deadlock, the entire program state of the thread
should be recovered including the global data, heap, stack, and TLS data. Unfortu-
nately, recovering the TLS data is challenging. Since the TLS data in shared libraries
and other program dependancies are not known a priori, it is practically not feasible
to determine the TLS region transparently, thus precluding Sammati from employing
address space protection to track updates to TLS.

6.0.2. Address Space Protection Overhead. The high costs of address space protection and
un-protection may preclude certain applications that have reasonably large memory
footprint and lock rate to benefit from Sammati.

To address these limitations of a pure runtime approach, we extend Sammati to
perform compile time analysis. The idea here is that by enforcing the following two
design constraints a) availability of program source and b) recompilation and relinking
of program source, which are otherwise relaxed in a pure runtime approach, we can
perform program analysis and compile time instrumentation to avoid the high runtime
costs of address space protection and provide a robust deadlock recovery.

7. COMPILE TIME EXTENSIONS
7.1. Overview
In order to mitigate the high runtime costs of virtual address space protection (two
variants described in Section 4.3), Sammati leverages support from the LLVM [Lat-
tner and Adve 2004] compiler infrastructure and instruments the store instructions in
the application at compile time. This enables Sammati’s runtime to track the program
updates without the need to employ address space protection. We note that this ex-
tension breaks our initial goal to avoid application recompilation or the availability of
program source, however we still preserve transparency by avoiding the programmer
to make any modifications to application. The compile time extensions merely involve
an additional step during the application compilation.

7.2. Instrumentation
Sammati’s compile time infrastructure transforms the program source code to LLVM’s
intermediate representation (IR). Each store instruction in the program is instru-
mented with a hook (an inline function) as shown in Figure 15. The hook passes in-
formation to the runtime system about the target address (known precisely only at
runtime) and, its length. The hook at runtime prior to performing the store instruc-
tion, checks if a cord is in a lock context. If so, it checks if the store is being performed
on a stack then Sammati does not privatize the VMA page, instead it simply performs
the store. Else, the store is being performed elsewhere in the address space (global
data, heap , TLS) hence, Sammati creates a copy of the page (twin as discussed in
Section 4.4), privatizes the page and performs the store. Sammati does not instrument
the load instructions and they are executed as they would otherwise. To preserve pro-
gram correctness and maintain efficiency, we generate highly optimized IR using (-O3)
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 1000   %110 = load double* %109, align 8
 1001   %111 = getelementptr inbounds double* %98, i64 %100
 1002   %112 = ptrtoint double* %111 to i64
 1003   %113 = load i8* @lock_context, align 1     //begin inline expansion
 1004   %114 = icmp eq i8 %113, 1
 1005   br i1 %114, label %bb3.i14, label %bb.i13
 1006
 1007 bb.i13:                                           ; preds = %bb14
 1008   %115 = inttoptr i64 %112 to double*
 1009   store double %110, double* %115, align 8
 1010   br label %store_double_instrument_fn.exit15
 1011
 1012 bb3.i14:                                          ; preds = %bb14
 1013   %116 = call i64 @handle_lock_context_store_double(double %110, i64 %112, i32 8) nounwind
 1014   br label %store_double_instrument_fn.exit15
 1015
 1016 store_double_instrument_fn.exit15:                ; preds = %bb.i13, %bb3.i14
 1017   %.pre262 = load %struct.Global_Private** @gp, align 8
 1018   br label %bb15

LLVM's Intermediate Representation (IR) of Program Source

1000   %85 = load double* %84, align 8
1001   %86 = getelementptr inbounds double* %73, i64 %75
1002   store double %85, double* %86, align 8

Sammati's Compile Time Instrumentation of LLVM IR

1000   %95 = load double* %94, align 8
1001   %96 = getelementptr inbounds double* %83, i64 %85
1002   %97 = ptrtoint double* %96 to i64
1003   %98 = call i64 @store_double_instrument_fn(double %95, i64 %97, i32 8) nounwind

Inline expansion of Sammati's Instrumentation functions

Fig. 15. Sammati’s Compile time extension instruments store instructions by transforming program source
to LLVM’s intermediate representation. Sammati replaces each store instruction with a corresponding func-
tion call depending on the type (int, float, double) information. After instrumentation Sammati expands the
inlined instrumentation function.

flag prior to instrumentation and we do not perform any optimizations on the IR after
instrumentation.

7.3. Performance Analysis
We follow the classification described in Section 5.2 and summarized in Table III to
analyze the performance of Sammati with compile time extensions. For each bench-
mark we measured several important characteristics including the pages privatized in
lock context, the total number of store instructions instrumented, number of ordinary
stores, number of lock context stores performed on global data and also on the stack.

7.3.1. Performance Overhead. Sammati instruments all the store instructions in a
program and at runtime privatizes (at page granularity) all the lock context stores.
Hence, the runtime overhead due to privatization and containment, propagation of
memory updates, and finally the cost of un-privatizing memory updates is precisely
identical to that in a pure runtime approach (variant-1 and variant-2).
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Table XIV. Instrumentation profile of applications in Set-1

Benchmark Threads Total Locks Lock Context Stores
pages Total Ordinary Lock Context
(privatized) instrumented Global Stack

Barnes

1 275216 842869 849330207 845624472 3575065 130670
2 275227 842834 849331111 845625361 3575080 130670
4 275293 843086 849332990 845627223 3575097 130670
8 275366 842585 849335390 845629583 3575137 130670
16 275507 842880 849339457 845633636 3575151 130670

FMM

1 4517437 4728860 4996393727 4887930878 108462849 0
2 4521239 4736799 5003784172 4895309923 108474249 0
4 4543901 4782105 5008168681 4899626461 108542220 0
8 4559540 4813782 5010535972 4901946871 108589101 0
16 4586949 4868541 5012392514 4903721375 108671139 0

Water

1 266568 270728 57240113261 57237716763 2396498 0
2 533071 541391 57244921720 57240129309 4792411 0
4 799902 812382 57252142804 57244954142 7188662 0
8 1333564 1354364 57266585749 57254604585 11981164 0
16 2400888 2438328 57295471121 57273904953 21566168 0

OverheadSammati ∝ ( cost of store instrumentation + write − set ×
[ cost of privatization + cost of creating copy + cost of propagating updates +
cost of un− privatizing ])

7.3.2. Set #1. Figure 16 illustrates the performance of Sammati’s runtime with com-
pile time extensions for applications in set-1. As shown in Table XIV, Barnes, FMM and
Water perform a reasonably large number of store instructions. For instance, Barnes
performs approximately 8.49 × 108 stores, FMM performs 5 × 109 stores and Water
performs approximately 5.7× 1010 stores.

99.563% of stores performed by Barnes with 16 threads, are ordinary accesses and
only a fraction (0.436%) of the total stores are performed within a lock context. Con-
sequently, resulting in a noticeable overhead due to instrumentation. Variant-2 write-
protects and un-write-protects approximately 3.5× 105 pages (shown in Table VI) and
incurs 1 × 106 access faults for Barnes. The instrumentation cost is almost identical
the cost of address space protection, and we do not notice a significant benefit of in-
strumentation over variant-2.

FMM performs 97.83% ordinary stores and 2.16% stores in a lock context. Moreover,
FMM write-protects and also un-write-protects approximately two order of magnitude
more pages then Barnes. Hence, we find that instrumentation performs significantly
better than variant-2. Additionally, compile time instrumentation allows Sammati to
scale well compared to variant-2 due to the absence of address space protection and
un-protection costs.

Water performs approximately 5.7 × 1010 stores and 99.96% of them are ordinary
stores, thus we find a significant overhead due to instrumentation compared to native
thread execution. Sammati’s variant-2 incurs approximately (4.2 × 107) access faults.
Since there are fewer access faults (recall tracked at the granularity of a 4K page), the
overhead of instrumentation exceeds the overhead of tracking access faults in Water.
Hence we find that variant-2 outperforms instrumentation.

7.3.3. Set #2. Figure 17 illustrates the performance of Sammati’s runtime with com-
pile time extensions for applications in set-2. Ocean, Radix, PCA perform relatively
large number of store instructions (shown in Table XV). Ocean performs approximately
2.4 × 109 stores, Radix performs 2.6 × 109 stores and PCA performs approximately
1.0 × 108 stores and all the three applications perform over 99.99% of such stores out-
side a lock context (a.k.a ordinary stores).
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Fig. 16. Performance of applications from Set-1 (extremely high lock acquisition rate, typically 50K/sec -
700K/sec) with Sammati’s runtime and compile time extensions on a 16 core system.

For Ocean, variant-2 protects and write-protects approximately 7.1× 107 pages and
incurs approximately, 3.6 × 107 access faults. Thus, variant-2 incurs significant over-
head compared to instrumentation. Additionally, since variant-1 write-protects and
un-write-protects a reasonably large number (approximately 2 × 1010) pages, instru-
mentation outperforms variant-1.

Variant-2 for Radix incurs approximately 2 × 106 access faults and write-protects
and un-write-protects approximately 3.6 × 106 pages, as a result, variant-2 incurs a
noticeable overhead. Variant-1 incurs additional overhead than instrumentation and
variant-2 due to its high address space protection cost (approximately 5.7× 108 pages).

The performance overhead due to instrumentation is negligible in PCA and its
performance is comparable to native thread execution. Instrumentation outperforms
variant-1 due to the cost of address space protection (≈ 1.9 × 109 pages). Variant-2 in-
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Table XV. Instrumentation profile of applications in Set-2

Benchmark Threads Total Locks Lock Context Stores
pages Total Ordinary Lock Context
(privatized) instrumented Global Stack

Ocean

1 173 173 24201025953 24201025780 173 0
2 346 238 24205041443 24205041205 238 0
4 692 286 24209295907 24209295621 286 0
8 1384 475 24217329657 24217329182 475 0
16 2768 530 24225844016 24225843486 530 0

Radix

1 4 4 2684373026 2684373022 4 0
2 17 16 2684400690 2684400674 16 0
4 43 32 2684462162 2684462130 32 0
8 95 65 2684594322 2684594257 65 0
16 199 132 2684874002 2684873870 132 0

PCA

1 10001 10001 100020001 100010000 10001 0
2 10002 10002 100020002 100010000 10002 0
4 10004 10004 100020004 100010000 10004 0
8 10008 10008 100020008 100010000 10008 0
16 10016 10016 100020016 100010000 10016 0

Table XVI. Instrumentation profile of applications in Set-3

Benchmark Threads Total Locks Lock Context Stores
pages Total Ordinary Lock Context
(privatized) instrumented Global Stack

FFT

1 1 1 4559224862 4559224861 1 0
2 2 2 4559224864 4559224862 2 0
4 4 4 4559224868 4559224864 4 0
8 8 8 4559224876 4559224868 8 0
16 16 16 4559224892 4559224876 16 0

LU-CP

1 1 1 22940251171 22940251170 1 0
2 2 2 22940251180 22940251178 2 0
4 4 4 22940251198 22940251194 4 0
8 8 8 22940251234 22940251226 8 0
16 16 16 22940251306 22940251290 16 0

LU-NCP

1 1 1 22940054557 22940054556 1 0
2 2 2 22940054562 22940054560 2 0
4 4 4 22940054572 22940054568 4 0
8 8 8 22940054592 22940054584 8 0
16 16 16 22940054632 22940054616 16 0

curs over 3 orders of magnitude more access faults compared to variant-1, consequently
variant-2 incurs a noticeable overhead compared to variant-1

7.3.4. Set #3. Figure 18 illustrates the performance of Sammati’s runtime with com-
pile time extensions for applications in set-3. All the applications in set-3 perform
almost 100% of writes outside a lock context as shown in Table XVI.

FFT performs approximately 4.5× 109 stores. Sammati write-protects and un-write-
protects approximately 1.2 × 107 pages and 1.5 × 106 pages in variant-1 and variant-2
respectively. Additionally, variant-2 incurs an order magnitude (1.0× 106) more access
faults compared to variant-1. Hence, variant-2 incurs the most overhead compared to
variant-1 and instrumentation. Due to the relatively large number of store instruc-
tions, the benefit of instrumentation is marginal in FFT compared to variant-2.

Both LU-CP and LU-NCP perform a large number (≈ 2.29× 1010) of stores and they
protect significantly fewer (5×105 in variants 1 and 2) pages, consequently, instrumen-
tation incurs more overhead than the cost of protecting the address space in LU-CP
and LU-NCP.

7.3.5. Memory Overhead. Sammati performs privatization and isolation at runtime,
the memory overhead (discussed in Section 5.2.6) is invariant of compile time instru-
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Fig. 17. Performance of applications from Set-2 (moderate lock acquisition rate, typically 10/sec - 50K/sec)
with Sammati’s runtime and compile time extensions on a 16 core system.

mentation and the memory overhead is precisely identical to Sammati’s pure runtime
approach.

7.4. Summary
Sammati’s compile time extensions significantly reduced the runtime overhead of Sam-
mati for some applications including FMM, Ocean, and PCA. The compile time exten-
sions did have a negative impact on the performance of some applications (LU-CP,
LU-NCP, and, FFT) where the cost of address space protection was lower than instru-
menting the entire program. While there is certainly no clear winner between a pure
runtime approach and a runtime approach with compile time extensions, we note that
on the whole the performance of Sammati is impressive.
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Fig. 18. Performance of applications from Set-3 (low lock acquisition rate, typically 0.5/sec - 10/sec) with
Sammati’s runtime and compile time extensions on a 16 core system.

8. RELATED WORK
This article is related to research in the areas of concurrency bug detection. Sammati is
primarily designed to address deadlocks and provide a platform for an effective compo-
sition of lock-based codes. Additionally, Sammati is capable of detecting certain kinds
of data races (discussed in Section 4.8). In this section we briefly discuss literature
related to deadlock detection and recovery, and data races.

8.1. Deadlock Detection and Recovery
8.1.1. Static Analysis. Several systems [Boyapati et al. 2002; Engler and Ashcraft 2003;

Flanagan et al. 2002; Sun Microsystems 2012; Naik et al. 2009; Savage et al. 1997;
Shanbhag 2008; Williams et al. 2005; Praun 2004; Valgrind 2012; Gerakios et al.
2011] based on program analysis were proposed to determine deadlocks. While pro-
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Thread-1

Acquire (L1);
   ...
   sleep (2);     
   Acquire (L2);

Acquisition of L2 
by Thread-1 
causes Threads 1 
& 2 to Deadlock

(a)

Thread-2

sleep (1);     
Acquire (L2);
   ...
   Acquire (L1);

L1 is chosen as 
the candidate 
for rollback

Thread-1

Acquire (L1);
   sleep(1);    
   Acquire (L2);

(b)

Thread-2

Acquire (L2);
   sleep (2);  
   Acquire (L3);

Thread-3

Acquire (L3);
   sleep(3);
   Acquire (L1); Acquisition of 

L1 by Thread-3 
causes Threads 
1 & 2 & 3 to 
Deadlock

L3 is chosen as 
the candidate 
for rollback

Thread-1 is 
blocked 
waiting for L2 Thread-2 is 

blocked 
waiting for L3

Fig. 19. (a) illustrates a simple deadlock between two threads due to cyclic lock acquisition. (b) depicts a
more complex example of deadlock involving more than two threads.

gram analysis can identify certain deadlocks based on information obtained at compile
time, it cannot identify all deadlocks in weakly typed languages such as C or C++.
Furthermore, such an approach may generate false positives in identifying deadlocks
resulting in spurious recovery actions. In contrast, Sammati is implemented as a pure
runtime system with optional compile time extensions. Sammati’s runtime employs
a deterministic algorithm to detect and eliminate deadlocks with no false positives
or negatives. Furthermore, Sammati does not require any modifications to the source
code and it is completely transparent to the application –deadlocks are detected and
eliminated without effecting the expected program semantics.

8.1.2. Dynamic Analysis. Dynamic analysis tools [Li et al. 2005; Agarwal and Stoller
2006; Bensalem and Havelund 2005; Harrow 2000; Havelund 2000; Joshi et al. 2009;
Jula et al. 2008; Qin et al. 2005; Wang et al. 2008] detect deadlocks at runtime. We
discuss each in detail.

Li et. al., [Li et al. 2005] proposed Pulse, an operating system technique to dynami-
cally detect deadlocks. Pulse scans for processes that are blocked for prolonged periods
of time. To identify deadlocks Pulse speculatively executes the blocked processes to
identify dependencies. Pulse builds a resource graph and traverses it to detect cycles
(deadlocks). Pulse can detect deadlocks also occur due to semaphores and pipes in ad-
dition to locks.

To ensure safety and program correctness, Pulse cannot perform I/O while specula-
tively executing processes hence, leading the program to traverse potentially incorrect
code-paths, resulting in false positives. Additionally, Pulse suffers from several false
negatives and cannot detect all deadlocks that occur at runtime. For instance, if the
granularity of monitoring for deadlocks is large, or if the speculative process executes
code paths that are different from the future events that the blocked process would
perform when awakened. In contrast Sammati, does not require any modifications
to the operating system and does not involve any false positives or negatives to detect
deadlocks. Additionally, Sammati is capable of recovering from deadlocks unlike Pulse.

Harrow [Harrow 2000] proposed Visual Threads, a framework to check concurrency
bugs at runtime. Visual Threads instruments the binary of the program and collects
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traces of events (lock acquisitions, releases etc.). It then uses the events to model the
execution of the application using a state machine and employs runtime checks to
detect bugs including deadlocks.

Bensalem et. al., [Bensalem and Havelund 2005; Bensalem et al. 2006] proposed a
runtime verification algorithm to detect potential deadlocks in applications written in
Java. In their approach they instrument the java bytecode to collect program execution
trace composed of a sequence of events. Their algorithm applies a set of rules on the
stream of events at runtime to detect potential deadlocks. The authors claim that their
approach reduces the number of false positives.

Agarwal and Stoller [Agarwal and Stoller 2006] proposed a runtime technique to de-
tect potential deadlocks that arise due to semaphores, condition variables, and locks.
In their approach they collect execution traces for the program and generate feasi-
ble permutations of the program traces to detect potential deadlocks. In contrast to
such systems, Sammati does not collect any traces, instead it deterministically detects
deadlocks at runtime resulting in no false positives.

Joshi et. al., [Joshi et al. 2009] proposed a technique called Deadlockfuzzer to de-
tect deadlocks. Their approach employs an imprecise randomized scheduler to create
deadlocks with a certain probability. They propose an extension of Goodlock [Havelund
2000] algorithm to detect potential deadlocks in multi-threaded applications.

Jula et. al., [Jula et al. 2008] proposed Dimmunix to enable applications develop
immunity to deadlocks. Dimmunix captures the signatures of deadlocks as they occur
in program during execution and it aims to avoid entering into the same pattern that
resulted in a deadlock.

Dimmunix’s runtime maintains a history of deadlocks and intercepts all lock acqui-
sition and release operations. For every lock acquisition, Dimmunix sends a request
message to its deadlock avoidance thread to determine if it is safe to acquire a lock.
The deadlock avoidance thread employs a resource allocation graph to represent a
program’s synchronization state, and control flows to identify code paths that led to
a deadlock. Dimmunix avoid deadlocks by maintaining the state information of each
deadlock pattern that occurs at runtime and aims to prevent such future occurrences
through deadlock prediction.

Qin et. al., [Qin et al. 2005] proposed Rx, a technique to recover programs for soft-
ware bugs. In their study, they checkpoint the application periodically and upon a soft-
ware failure, rollback the program to the most recent (in program order) checkpoint
and re-execute the program under a new environment (perturbed original environment
by artificially introducing noise, e.g., delay freeing of buffers, asynchronous signaling,
etc.,). Rx requires modifications to the kernel and the application. Rx is capable of
detecting a wide range of software bugs. In contrast, Sammati detects only deadlocks
and certain kinds of data races and does not require any modifications to the operating
system. Additionally, Sammati performs efficient deadlock recovery without requiring
a complete application checkpoint and the associated overhead.

In another study, Wang et. al., [Wang et al. 2008; Wang et al. 2009] proposed Gadara,
a technique to avoid deadlocks. Gadara employs program analysis to develop a model
of the program. It then employs discrete control theory to process the control flow
that avoids deadlocks in the model. Gadara then instruments the program source with
hooks to the runtime. These hooks control the execution flow of the program avoiding
potential deadlocks.

Most recently, Gerakios et. al., [Gerakios et al. 2011] proposed a deadlock avoidance
technique. In their approach, they employ program analysis to collect the order of lock
acquisitions and releases in a program. They propose that a deadlock can be efficiently
avoided if information is available on the lock currently being requested, and the set
of locks acquired between the lock acquisition and its subsequent release, referred
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to as future set of the lock. To avoid deadlocks, in their approach, they grant a lock
only when both the requested lock and its future lockset are available. Their approach
suffers from the several limitations of program analysis. In contrast, Sammati employs
a pure runtime approach that uses a deterministic algorithm to detect and eliminate
deadlocks. Sammati does not rely on source analysis or require any modifications to
the source code.

Berger et.al., [Berger et al. 2009] proposed Grace, a runtime system that elimi-
nates concurrency bugs including deadlocks. Grace employs sequential composition
of threads with speculative execution to achieve speedup. Grace supports applications
written to leverage fork-join parallelism. Grace treats locks as no-ops and consequently
eliminates deadlocks.

Joshi et. al., [Joshi et al. 2010] proposed CheckMate to detect a broad range of
deadlocks resulting from locks, condition variables, and other forms of synchroniza-
tion primitives. CheckMate collects the program trace during a deadlock free run and
records operations such as lock acquisitions, releases etc., relevant to finding dead-
locks. It then employs a model checker to explore possible thread interleavings from
the information collected in the program trace. The model checker checks for potential
deadlocks. CheckMate is a predictive dynamic analysis tool consequently it is prone is
false positives and false negatives.

Several techniques [Musuvathi and Qadeer 2007; Musuvathi et al. 2008; Sen 2008;
Burckhardt et al. 2010; Edelstein et al. 2008] based on increasing thread interleav-
ing through scheduler noise were proposed to increase the chances of detecting bugs
while testing concurrent programs. In contrast to such systems, Sammati employs a
deterministic algorithm to detect and eliminate deadlocks that occur during a particu-
lar execution of a program. Sammati does predict potential deadlocks that might arise
during other interleavings of program execution.

8.2. Transactional Memory (TM)
Transactional memory [Herlihy and Moss 1993; Shavit and Touitou 1995] introduces
a programming model where synchronization is achieved via short critical sections
called transactions that appear to execute atomically. The core goal of transactional
memory is to achieve composability of arbitrary transactions, while presenting a sim-
ple memory model. Similar to lock-based codes, transactions provide mutual exclusion.
However, unlike-lock based codes, transactions can be optimistically executed con-
currently, leading to efficient implementation. However, interactions between trans-
actions and non-transactional code is still ill-defined. Blundell et.al., [Colin Blundell
and Milo 2006] introduced the notion of weak and strong atomicity to define the mem-
ory semantics of interactions between transactions and non transactional code and
show that such interaction can lead to races, program errors or even deadlock. Defin-
ing the semantics of the memory model in the interaction between transactional and
non transactional code is an on going area of research [Hudson et al. 2006; Shpeisman
et al. 2007; Spear et al. 2007].

Most TM systems are based on language support with special programming lan-
guage constructs [Harris and Fraser 2003; Ni 2008; Yoo et al. 2008] or API [Saha et al.
2006] to provide TM semantics. Alternatively, some TMs rely on special memory allo-
cation primitives [Hudson et al. 2006] and wrappers [Ni 2008] to support transactional
memory semantics. Fine-grain privatization of updates within transactions is typically
achieved by instrumenting load and store operations, which can result in significant
impact on application speedup [Cascaval et al. 2008]. Sammati may be viewed as a
pessimistic STM without optimistic concurrency.
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9. ONGOING AND FUTURE WORK
We are currently working on improving the performance of Sammati through com-
pile time analysis and instrumentation. Sammati’s overhead primarily stems from the
protection and privatization of the virtual address space. We believe that we can re-
duce this runtime overhead by employing program analysis to accurately determine
the write-set (i.e., data modified) within a lock even in the presence of nested and con-
ditional lock acquisition and release sequences. There are several challenges in the
details of this work. First we need a mechanism to identify locks and their scope in
the program. Second, we need to accurately determine the write-set (i.e., data mod-
ified) within a lock. In situations where program analysis cannot determine control
flow, the Sammati runtime can act as the fail-safe to provide deterministic deadlock
detection and recovery. Third, we need to isolate the memory updates within locks to
facilitate recovery on deadlock. We need a lightweight memory shadowing mechanism
to accomplish isolation. Additionally, the ordering and integrity of the load and store
instructions must be preserved in order to maintain program correctness. We plan
on leveraging the LLVM compiler infrastructure to implement some of our proposed
techniques.

During deadlock recovery, an arbitrary lock that is part of the cyclic dependency is
chosen as the victim and the associated critical section is rolled back to a point prior
to lock acquisition. Instead of selecting an arbitrary lock as the victim, we present
three different metrics that can be used to bias lock recovery. First, to support non-
idempotent operations, we bias the victim selection against critical sections that are
non-restartable. Second, to support thread priority, we propose to bias the victim se-
lection such that locks owned by lower priority threads are selected as victims. Finally,
we propose to track execution progress (in CPU cycles) and bias the victim selection
such that the probability of selection of a lock as a victim is inversely proportional to
the CPU time already consumed by the associated critical section.

10. CONCLUSION
In this paper we presented Sammati, a runtime system for transparent deadlock de-
tection and recovery in POSIX threaded applications written in type-unsafe languages
such as C and C++. We implemented the runtime system as a pre-loadable library
and its use does not require either the application source code or recompiling/relink-
ing phases thereby enabling its use for existing applications with arbitrary multi-
threading models. We discussed the design and architecture of Sammati and we pro-
vided several extensions to address its shortcomings and to reduce its performance
overhead.

We presented the results of a performance evaluation of Sammati using SPLASH,
Phoenix and synthetic benchmark suites. Our results indicate that Sammati performs
reasonably well even in the presence of fine-grain locking and its performance is com-
parable to native Pthreads for some applications with modest memory overhead.

We believe that by providing usable and efficient deadlock detection and recovery
for threaded codes, we provide a critical tool to programmers designing, implementing,
and debugging complex applications for emerging many-core platforms. More broadly,
this research work will impact the future of concurrent programming and assist in
improving the productivity of application developers.

REFERENCES
AGARWAL, R. AND STOLLER, S. D. 2006. Run-time detection of potential deadlocks for programs with locks,

semaphores, and condition variables. In PADTAD ’06: Proceedings of the 2006 workshop on Parallel and
Distributed Systems: Testing and Debugging. ACM, 51–60.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:42 Hari. K. Pyla and Srinidhi Varadarajan

AMZA, C., COX, A., DWARKADAS, S., KELEHER, P., LU, H., RAJAMONY, R., YU, W., AND ZWAENEPOEL, W.
1996. Treadmarks: shared memory computing on networks of workstations. Computer 29, 2, 18 –28.

BENSALEM, S., FERNANDEZ, J.-C., HAVELUND, K., AND MOUNIER, L. 2006. Confirmation of deadlock
potentials detected by runtime analysis. In Proceedings of the 2006 workshop on Parallel and distributed
systems: testing and debugging. PADTAD ’06. ACM, New York, NY, USA, 41–50.

BENSALEM, S. AND HAVELUND, K. 2005. Scalable deadlock analysis of multi-threaded programs. In PAD-
TAD ’05: Proceedings of the Parallel and Distributed Systems: Testing and Debugging. Vol. 1. Springer-
Verlag.

BERGER, E. D., YANG, T., LIU, T., AND NOVARK, G. 2009. Grace: safe multithreaded programming for
C/C++. In OOPSLA ’09: Proceeding of the 24th ACM SIGPLAN conference on Object Oriented Program-
ming Systems Languages and Applications. ACM, 81–96.

BOYAPATI, C., LEE, R., AND RINARD, M. 2002. Ownership types for safe programming: preventing data
races and deadlocks. In OOPSLA ’02: Proceedings of the 17th ACM SIGPLAN conference on Object-
Oriented Programming, Systems, Languages, and Applications. ACM, 211–230.

BURCKHARDT, S., KOTHARI, P., MUSUVATHI, M., AND NAGARAKATTE, S. 2010. A randomized scheduler
with probabilistic guarantees of finding bugs. SIGARCH Computer Architecture News 38, 1, 167–178.

CARTER, J. B., BENNETT, J. K., AND ZWAENEPOEL, W. 1991. Implementation and performance of munin.
In Proceedings of the thirteenth ACM symposium on Operating systems principles. SOSP ’91. ACM, New
York, NY, USA, 152–164.

CASCAVAL, C., BLUNDELL, C., MICHAEL, M., CAIN, H. W., WU, P., CHIRAS, S., AND CHATTERJEE, S. 2008.
Software Transactional Memory: Why Is It Only a Research Toy? ACM Queue 6, 5, 46–58.

COLIN BLUNDELL, E. C. L. AND MARTIN, M. M. K. 2005. Deconstructing transactional semantics: The
subtleties of atomicity. WDDD ’05: Proceedings of the 4th workshop on duplicating, deconstructing and
debunking, 48–55.

COLIN BLUNDELL, E. C. L. AND MILO, M. 2006. Subtleties of transactional memory atomicity semantics.
IEEE Computer Architecture Letters 5, 2, 17.

DOUG LEA. 2012. A memory allocator. http://g.oswego.edu/dl/html/malloc.html.
EDELSTEIN, O., FARCHI, E., GOLDIN, E., NIR, Y., RATSABY, G., AND UR, S. 2008. Framework for test-

ing multi-threaded java programs. In Concurrency and Computation: Practice and Experience. Vol. 15.
USENIX, 485–499.

ENGLER, D. AND ASHCRAFT, K. 2003. RacerX: effective, static detection of race conditions and deadlocks.
SIGOPS Operating Systems Review 37, 5, 237–252.

FLANAGAN, C., LEINO, K. R. M., LILLIBRIDGE, M., NELSON, G., SAXE, J. B., AND STATA, R. 2002. Ex-
tended static checking for java. In PLDI ’02: Proceedings of the ACM SIGPLAN 2002 Conference on
Programming Language Design and Implementation. ACM, 234–245.

GERAKIOS, P., PAPASPYROU, N., AND SAGONAS, K. 2011. A type and effect system for deadlock avoidance
in low-level languages. In Proceedings of the 7th ACM SIGPLAN workshop on Types in language design
and implementation. TLDI ’11. ACM, New York, NY, USA, 15–28.

GERAKIOS, P., PAPASPYROU, N., SAGONAS, K., AND VEKRIS, P. 2011. Dynamic deadlock avoidance in sys-
tems code using statically inferred effects. In Proceedings of the 6th Workshop on Programming Lan-
guages and Operating Systems. PLOS ’11. ACM, New York, NY, USA, 5:1–5:5.

HARRIS, T. AND FRASER, K. 2003. Language support for lightweight transactions. In OOPSLA ’03: Proceed-
ings of the 18th ACM SIGPLAN conference on Object-Oriented Programming, Systems, Languages, and
Applications. Vol. 38. ACM, 388–402.

HARROW, J. J. 2000. Runtime checking of multithreaded applications with visual threads. In Proceedings
of the 7th International SPIN Workshop on SPIN Model Checking and Software Verification. Springer-
Verlag, 331–342.

HAVELUND, K. 2000. Using runtime analysis to guide model checking of java programs. In Proceedings of the
7th International SPIN Workshop on SPIN Model Checking and Software Verification. Springer-Verlag,
245–264.

HERLIHY, M. AND MOSS, J. E. B. 1993. Transactional memory: architectural support for lock-free data
structures. SIGARCH Computer Architecture News 21, 2, 289–300.

HUDSON, R. L., SAHA, B., ADL-TABATABAI, A.-R., AND HERTZBERG, B. C. 2006. McRT-Malloc: a scal-
able transactional memory allocator. In ISMM ’06: Proceedings of the 5th International Symposium on
Memory Management. ACM, 74–83.

JIN, G., SONG, L., ZHANG, W., LU, S., AND LIBLIT, B. 2011. Automated atomicity-violation fixing. In Pro-
ceedings of the 32nd ACM SIGPLAN conference on Programming language design and implementation.
PLDI ’11. ACM, New York, NY, USA, 389–400.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Deterministic Dynamic Deadlock Detection and Recovery A:43

JOSHI, P., NAIK, M., SEN, K., AND GAY, D. 2010. An effective dynamic analysis for detecting generalized
deadlocks. In Proceedings of the eighteenth ACM SIGSOFT international symposium on Foundations of
software engineering. FSE ’10. ACM, New York, NY, USA, 327–336.

JOSHI, P., PARK, C.-S., SEN, K., AND NAIK, M. 2009. A randomized dynamic program analysis technique
for detecting real deadlocks. In PLDI ’09: Proceedings of the 2009 ACM SIGPLAN conference on Pro-
gramming Language Design and Implementation. ACM, 110–120.

JULA, H., TRALAMAZZA, D., ZAMFIR, C., AND CANDEA, G. 2008. Deadlock immunity: Enabling systems
to defend against deadlocks. In In Proc. 8th USENIX Symposium on Operating Systems Design and
Implementation (OSDI). USENIX.

KELEHER, P., COX, A. L., DWARKADAS, S., AND ZWAENEPOEL, W. 1994. Treadmarks: distributed shared
memory on standard workstations and operating systems. In Proceedings of the USENIX Winter 1994
Technical Conference on USENIX Winter 1994 Technical Conference. USENIX Association, Berkeley,
CA, USA, 10–10.

LATTNER, C. AND ADVE, V. 2004. Llvm: A compilation framework for lifelong program analysis & transfor-
mation. In Proceedings of the international symposium on Code generation and optimization: feedback-
directed and runtime optimization. CGO ’04. 75–.

LI, T., ELLIS, C. S., LEBECK, A. R., AND SORIN, D. J. 2005. Pulse: a dynamic deadlock detection mechanism
using speculative execution. In Proceedings of the annual conference on USENIX Annual Technical
Conference. ATEC ’05. USENIX Association, Berkeley, CA, USA, 3–3.

LU, S., PARK, S., SEO, E., AND ZHOU, Y. 2008. Learning from mistakes: a comprehensive study on real world
concurrency bug characteristics. In ASPLOS XIII: Proceedings of the 13th International conference on
Architectural Support for Programming Languages and Operating Systems. ACM, 329–339.

MENON, V., BALENSIEFER, S., SHPEISMAN, T., ADL-TABATABAI, A.-R., HUDSON, R. L., SAHA, B., AND
WELC, A. 2008. Single global lock semantics in a weakly atomic stm. SIGPLAN Notices. 43, 15–26.

MUSUVATHI, M. AND QADEER, S. 2007. Iterative context bounding for systematic testing of multithreaded
programs. In Proceedings of the 2007 ACM SIGPLAN conference on Programming language design and
implementation. PLDI ’07. ACM, New York, NY, USA, 446–455.

MUSUVATHI, M., QADEER, S., BALL, T., BASLER, G., NAINAR, P. A., AND NEAMTIU, I. 2008. Finding
and reproducing heisenbugs in concurrent programs. In Proceedings of the 8th USENIX conference on
Operating systems design and implementation. OSDI’08. USENIX Association, Berkeley, CA, USA, 267–
280.

NAIK, M., PARK, C.-S., SEN, K., AND GAY, D. 2009. Effective static deadlock detection. In ICSE ’09: Pro-
ceedings of the 2009 IEEE 31st International Conference on Software Engineering. IEEE Computer
Society, 386–396.

NI, Y. E. A. 2008. Design and implementation of transactional constructs for C/C++. In OOPSLA ’08: Pro-
ceedings of the 23rd ACM SIGPLAN conference on Object-Oriented Programming Systems Languages
and Applications. ACM, 195–212.

PRAUN, C. V. 2004. Detecting synchronization defects in multi-threaded object-oriented programs. In PhD
Thesis.

PYLA, H. K. AND VARADARAJAN, S. 2010. Avoiding deadlock avoidance. In Proceedings of the 19th Inter-
national Conference on Parallel Architectures and Compilation Techniques. PACT ’10. ACM, New York,
NY, USA, 75–86.

QIN, F., TUCEK, J., SUNDARESAN, J., AND ZHOU, Y. 2005. Rx: treating bugs as allergies—a safe method
to survive software failures. In SOSP ’05: Proceedings of the twentieth ACM Symposium on Operating
Systems Principles. ACM, 235–248.

RANGER, C., RAGHURAMAN, R., PENMETSA, A., BRADSKI, G., AND KOZYRAKIS, C. 2007. Evaluating
MapReduce for Multi-core and Multiprocessor Systems. In HPCA ’07: Proceedings of the 2007 IEEE
13th International Symposium on High Performance Computer Architecture. IEEE Computer Society,
13–24.

SAHA, B., ADL-TABATABAI, A.-R., HUDSON, R. L., MINH, C. C., AND HERTZBERG, B. 2006. McRT-STM: a
high performance software transactional memory system for a multi-core runtime. In PPoPP ’06: Pro-
ceedings of the eleventh ACM SIGPLAN symposium on Principles and Practice of Parallel Programming.
ACM, 187–197.

SAVAGE, S., BURROWS, M., NELSON, G., SOBALVARRO, P., AND ANDERSON, T. 1997. Eraser: a dynamic
data race detector for multithreaded programs. ACM Transactions on Computer Systems 15, 4, 391–
411.

SEN, K. 2008. Race directed random testing of concurrent programs. In Proceedings of the 2008 ACM SIG-
PLAN conference on Programming language design and implementation. PLDI ’08. ACM, New York,
NY, USA, 11–21.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:44 Hari. K. Pyla and Srinidhi Varadarajan

SHANBHAG, V. K. 2008. Deadlock-detection in java-library using static-analysis. Asia-Pacific Software En-
gineering Conference 0, 361–368.

SHAVIT, N. AND TOUITOU, D. 1995. Software transactional memory. In PODC ’95: Proceedings of the four-
teenth annual ACM symposium on Principles of Distributed Computing. ACM, 204–213.

SHPEISMAN, T., MENON, V., ADL-TABATABAI, A.-R., BALENSIEFER, S., GROSSMAN, D., HUDSON, R. L.,
MOORE, K. F., AND SAHA, B. 2007. Enforcing isolation and ordering in STM. In PLDI ’07: Proceedings
of ACM SIGPLAN 2007 conference on Programming Language Design and Implementation. Vol. 42.
ACM, 78–88.

SPEAR, M. F., MARATHE, V. J., DALESSANDRO, L., AND SCOTT, M. L. 2007. Privatization techniques for
software transactional memory. In PODC ’07: Proceedings of the twenty-sixth annual ACM symposium
on Principles of Distributed Computing. ACM, 338–339.

SPLASH-2. 2012. SPLASH-2 benchmark suite. http://www.capsl.udel.edu/splash.
SUN MICROSYSTEMS. 2012. Lock Lint - Static Data Race and Deadlock Detection Tool for C. http:

//developers.sun.com/solaris/articles/locklint.html.
VALGRIND. 2012. Helgrind: a thread error detector. http://valgrind.org/docs/manual/hg-manual.html.
VOLOS, H., TACK, A. J., SWIFT, M. M., AND LU, S. 2012. Applying transactional memory to concurrency

bugs. In Proceedings of the seventeenth international conference on Architectural Support for Program-
ming Languages and Operating Systems. ASPLOS ’12. ACM, New York, NY, USA, 211–222.

WANG, C. AND WU, Y. 2010. From lock to correct and efficient software transactional memory. In Proceed-
ings of the 2010 Workshop on Interaction between Compilers and Computer Architecture. INTERACT-14.
ACM, New York, NY, USA, 8:1–8:8.

WANG, Y., KELLY, T., KUDLUR, M., LAFORTUNE, S., AND MAHLKE, S. 2008. Gadara: Dynamic deadlock
avoidance for multithreaded programs. In In Proc. 8th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI). USENIX.

WANG, Y., LAFORTUNE, S., KELLY, T., KUDLUR, M., AND MAHLKE, S. 2009. The theory of deadlock avoid-
ance via discrete control. In Proceedings of the 36th annual ACM SIGPLAN-SIGACT symposium on
Principles of programming languages. POPL ’09. ACM, New York, NY, USA, 252–263.

WILLIAMS, A., THIES, W., AND ERNST, M. D. 2005. Static deadlock detection for java libraries. In ECOOP
2005 - Object-Oriented Programming. 602–629.

XIONG, W., PARK, S., ZHANG, J., ZHOU, Y., AND MA, Z. 2010. Ad hoc synchronization considered harmful. In
Proceedings of the 9th USENIX conference on Operating systems design and implementation. OSDI’10.
1–8.

YOO, R. M., NI, Y., WELC, A., SAHA, B., ADL-TABATABAI, A.-R., AND LEE, H.-H. S. 2008. Kicking the tires
of software transactional memory: why the going gets tough. In SPAA ’08: Proceedings of the twentieth
annual Symposium on Parallelism in Algorithms and Architectures. ACM, 265–274.

ZHANG, W., SUN, C., AND LU, S. 2010. Conmem: detecting severe concurrency bugs through an effect-
oriented approach. In ASPLOS XV:Proceedings of the 15th International conference on Architectural
Support for Programming Languages and Operating Systems. ACM, New York, NY, USA, 179–192.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.


