
Coarse-Grain Speculation for Emerging Processors

Hari K. Pyla
Virginia Polytechnic Institute and State University

harip@cs.vt.edu

Categories and Subject Descriptors D.1.3 [Programming
Techniques]: Concurrent Programming—Parallel program-
ming; D.3.3 [Programming Languages]: Language Con-
structs and Features—Concurrent programming structures

General Terms Algorithms, Design, Languages, Measure-
ment and Performance

Keywords Speculative Parallelism, Coarse-grain Specula-
tion, Program Analysis, Concurrent Programming and Run-
time Systems

1. Research Problem
The impending multi/many-core processor revolution re-
quires that programmers leverage explicit concurrency to
improve performance. Unfortunately, a large body of appli-
cations/algorithms are inherently hard to parallelize due to
execution order constraints imposed by data and control de-
pendencies or being sensitive to their input data and not scale
perfectly, leaving several cores idle. The goal of this research
is to enable such applications leverage multi/many-cores ef-
ficiently to improve their performance.

2. Motivation
The important application domain that will benefit from our
approach are multiple equivalent algorithms whose perfor-
mance differ depending on input data. For example, graph
coloring is widely used in domains such as job scheduling,
bandwidth allocation, pattern matching, and compiler op-
timization (register allocation). Existing approaches to this
problem rely on probabilistic and meta-heuristic techniques,
whose performance varies widely with the input parameters
such as the graph’s topology and number of colors. In addi-
tion to input sensitivity, graph coloring algorithms are hard
to parallelize due to inherent data dependencies.
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As another example, consider partial differential equa-
tions (PDEs) solvers in large scale simulations for compu-
tational science and engineering applications such as fluid
dynamics, weather and climate modeling, structural analy-
sis, and computational geosciences. The large, sparse linear
systems of algebraic equations use preconditioned iterative
methods, whose performance varies widely from problem to
problem, even for related problem sequences (e.g., discrete
time steps in a time-dependent simulation). Unfortunately,
the best iterative method is not known a priori.

Yet another example are combinatorial problems includ-
ing sorting, searching, permutations and partitions with well-
known theoretical algorithmic bounds, but whose runtime
depends on a variety of factors,s including the amount of in-
put data (algorithmic bounds assume asymptotic behavior),
the sortedness of the input data, and cache locality of the
implementation [1].

3. Approach
This work equips programmers with a powerful tool for ex-
ploiting parallelism by means of coarse-grain speculation.
Speculative execution at coarse granularities (e.g., code-
blocks, methods, algorithms) offers a promising program-
ming model for exploiting parallelism for many hard-to-
parallelize applications.

Our programming model can express computation at any
granularity, so that any application unit can be executed
speculatively. Although the idea of coarse-grain “speculative
execution” is relatively straightforward, its efficient imple-
mentation is strewn with challenges. Shared memory parallel
programs are difficult to implement correctly, and so is de-
tecting concurrency bugs (e.g., data races, deadlocks, order
violations, atomicity violations) [5]. Hence, the programmer
must not be burdened with using the low level threading
primitives to create speculative control flows, manage roll-
backs, and recover in the event of mis-speculations.

We present a simple speculative programming frame-
work, Anumita (guess in Sanskrit), in which coarse-grain
speculative code blocks execute concurrently, but the results
from only a single speculation modify the program state. An-
umita is implemented as a shared library that exposes APIs
for common type-unsafe languages including C, C++ and
Fortran. Its runtime system transparently (a) creates, instan-
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Figure 1. PDE solvers (iterative and direct); Y-axis: time-
to-solution; X-axis: input parameter. Anumita consistently
matches the fastest method for each problem.

tiates, and destroys speculative control flows, (b) performs
name-space isolation, (c) tracks data accesses for each spec-
ulation, (d) commits the memory updates of successful spec-
ulations, and (e) recovers from memory side-effects of any
mis-predictions.

Anumita associates each speculation flow’s (e.g., an in-
stance of a code block or a function) memory accesses in
a speculation composition (loosely, a collection of possible
code blocks that execute concurrently) and localizes them,
isolating speculation flows through privatization of address
space. Ultimately, a single speculation flow within a com-
position is allowed to modify the program state. We present
well-defined semantics that ensures program correctness for
propagating the memory updates. Anumita supports a wide
range of applications by providing expressive evaluation cri-
teria for speculative execution that go beyond time to solu-
tion to include arbitrary quality of solution criteria. Anumita
simplifies speculative parallelism and relieves the program-
mer from the subtleties of concurrent programming.

Using Anumita requires minimal modifications (8-10
lines on average) to application source code. Additionally,
the speculation-aware runtime manages memory and col-
lects garbage from failed speculations. In the context of
high-performance computing, with the prevalent OpenMP
threading model, Anumita naturally extends speculation to
an OpenMP context through a pragma.

4. Background and Related Work
Speculative execution is used in a variety of contexts to im-
prove performance, including low level fine-grain specula-
tion in hardware and compilation (e.g., branch prediction,
prefetching). Software transaction systems rely on optimistic
concurrency. In contrast to existing systems [1–4] Anumita
neither relies on value speculation nor employs optimistic
concurrency to achieve parallelism. It does not require an-
notating any variables nor rely on binary instrumentation
or collect traces. Anumita introduces the notion of a non-
deterministic choice operator to imperative programming.

5. Experimental Results
We evaluated Anumati using three real applications: a multi-
algorithmic PDE solving framework, a graph (vertex) color-
ing problem, and a suite of sorting algorithms. Our exper-
imental results indicate that Anumita is capable of signifi-
cantly improving the performance of hard-to-parallelize and
input sensitive applications by leveraging speculative par-
allelism. For instance, for the PDE solver (Figure 1) the
speedup ranged from 0.84-36.19, for the graph coloring
problem it ranged from 0.95-7.33, and for the sort bench-
mark it ranged from 0.84-62.95. With Anumita, it is possi-
ble to obtain the best solution among multiple heuristics. In
some cases of heuristics failing to arrive at a solution, spec-
ulation guaranteed not only a solution but also the one that
is nearly as fast as the fastest alternative. We are currently
working on improving the performance of Anumita through
program analysis and provide support for I/O.

6. Contributions
We presented Anumita, a language-independent runtime
system for exploiting coarse-grain speculative parallelism in
hard to parallelize and/or highly input sensitive applications
–an increasingly important problem in this multi/many-core
era. Our goal is to make speculation a first class paralleliza-
tion method in such applications. Our research efforts aim at
helping adapt and sustain the increasing core counts.

Additionally, Anumita’s language transparency and sim-
plicity, will relieve the programmer from the subtleties of
concurrent programming and help enable its use with a wide
variety of programming languages including C, C++ and
Fortran. To our knowledge, Anumita is the first system to
provide support for exploiting coarse-grain speculative par-
allelism in OpenMP based applications. Finally, using real
applications we show how our proposed programming con-
structs achieve significant speedup without sacrificing per-
formance, portability and usability.
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