
Transparent Runtime Deadlock Elimination

Hari. K. Pyla
Virginia Tech

Blacksburg, Virginia, United States
harip@vt.edu

Srinidhi Varadarajan
∗

Virginia Tech
Blacksburg, Virginia, United States

srinidhi@vt.edu

ABSTRACT
Thread based concurrent programming is hard due to the
potential of concurrency bugs (e.g., data races, atomicity vi-
olations, deadlocks, and order violations). While data races
and atomicity violations can be ameliorated with appropri-
ate synchronization (a non-trivial problem in itself !), dead-
locks require fairly complex avoidance techniques which may
fail when the order of lock acquisition is not known apri-
ori [2]. The goal of this research is to present an efficient
and practical system that transparently detects and elimi-
nates deadlocks in real-world multi-threaded applications.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming—Parallel programming ; D.3.4 [Programming Lan-
guages]: Processors—Run-time environments

General Terms
Algorithms, Design, Languages, Performance and Reliabil-
ity

Keywords
Deadlock Detection and Recovery, Concurrent Programming,
Program Analysis, and Runtime Systems

1. INTRODUCTION
In practice, identifying a concurrency bug does not neces-

sarily mean that it can be easily fixed. To properly fix the
concurrency bug, the programmer must identify the root
cause of the problem rather than simply observing how the
bug manifests itself in the program’s execution. Addition-
ally, such bugs are often hard to reproduce. Properly fixing
a concurrency bug may require a major software redesign.
Recent studies have shown that the patches developed to fix

∗Faculty Advisor

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PACT’12, September 19–23, 2012, Minneapolis, Minnesota, USA.
Copyright 2012 ACM 978-1-4503-1182-3/12/09 ...$15.00.

a bug are themselves error-prone (70% of the time in their
first release) and they introduce new bugs [1]. On average, a
concurrency bug fix takes about 3 fixes (patches) before it is
actually fixed [3, 1]. Unless we find mechanisms to enable a
large number of programmers, representing a wide array of
applications, to use these parallel shared memory platforms
effectively, the potential of many-core will go unrealized.

In this research we present Serenity, a system that trans-
parently and deterministically eliminates deadlocks at run-
time in applications written in type-unsafe languages such
as C, C++. Serenity operates by (a) associating memory
updates with one or more locks guarding the updates and
(b) containing (privatizing) the updates until all locks pro-
tecting the updates have been released. All memory updates
within a critical section protected by one or more locks are
performed atomically at the release of all surrounding locks.
In such a system, deadlock detection can be performed at
the acquisition of each lock and recovery merely involves
selecting a victim lock and discarding all privatized mem-
ory updates performed subsequent to the acquisition of the
victim.

Serenity transforms the program source to LLVM’s IR and
provides (a) efficient programming analysis techniques that
infer the scope of a lock and (b) selective compile time instru-
mentation of the identified scope. Serenity’s runtime system
provides an efficient runtime shadowing technique to imple-
ment containment, thereby transparently and automatically
eliminating deadlocks.

A comprehensive performance analysis using several ap-
plications shows that the scalability of Serenity is compa-
rable to native thread execution with modest performance
overhead.

The key contribution of this work is a practical system
that can eliminate deadlocks in real-world applications. By
providing usable and efficient deadlock detection and recov-
ery for threaded code, Serenity provides a critical tool to
programmers designing, implementing and debugging com-
plex applications for emerging many-core platforms.

2. REFERENCES
[1] G. Jin, L. Song, W. Zhang, S. Lu, and B. Liblit,

Automated Atomicity-Violation Fixing, In PLDI ’11,
pages 389–400.

[2] H. K. Pyla and S. Varadarajan, Avoiding Deadlock
Avoidance, In PACT ’10, pages 75–86.

[3] H. Volos, A. J. Tack, M. M. Swift, and S. Lu, Applying
transactional memory to concurrency bugs, In ASPLOS
’12, pages 211–222.

477

