
1

Tempest: A portable tool to identify hot spots in parallel code

Kirk W. Cameron, Hari K. Pyla, and Srinidhi Varadarajan
Virginia Polytechnic Institute and State University

{cameron, harip, srinidhi}@cs.vt.edu

Abstract
Compute clusters are consuming more power at

higher densities than ever before. This results in
increased thermal dissipation, the need for powerful
cooling systems, and ultimately a reduction in system
reliability as temperatures increase. Over the past
several years, the research community has reacted to
this problem by producing software tools such as
HotSpot and Mercury to estimate system thermal
characteristics and validate thermal-management
techniques. While these tools are flexible and useful,
they suffer several limitations. For the average user
such simulation tools can be cumbersome to use.
These tools may take significant time and expertise to
port to different systems. Lastly, such tools produce
significant detail and accuracy at the expense of
execution time enough to prohibit iterative testing.
We propose a fast, easy to use, accurate, portable
software tool called Tempest (for temperature
estimator) that leverages emergent thermal sensors
to enable user profiling, evaluating, and reducing the
thermal characteristics of systems and applications.
In this paper, we illustrate the use of Tempest to
analyze the thermal effects of various parallel
benchmarks in clusters.

1. Introduction

The power consumption of clusters of servers has
reached critical levels. The US Environmental
Protection Agency recently announced its intention to
reward energy efficient server designs with
EnergyStar ratings, a program popularized for
appliances and monitors in the last 25 years [9].
Server power is increasing for two primary reasons.
First, the pursuit of Moore’s law has led to devices
that contain large numbers of transistors at higher
densities. Second, the pursuit of performance has led
to systems (server clusters and data centers) with
large numbers of power-hungry components in close
proximity.

Increased power consumption and system
densities have multiple side effects. Operation costs
increase for higher powered clusters. Meanwhile
power consumption produces additional heat which

must be dissipated by complex cooling systems and
can result in higher average operating temperatures
which decrease the reliability of microelectronics.
For example, the Arrhenius equation states a
temperature increase of 10 degrees Celsius results in
reliability decrease of an electronic device by 50
percent. In a compute server cluster this translates to
a shorter average life span for each electronic device
and a shorter mean-time-between-failure (MTBF).

To curb the effects of rising thermal temperatures
in compute servers, the research community has
introduced tools to enable design and validation of
thermal management techniques that reduce heat
dissipation. Light-weight tools use direct thermal
sensor measurement, emphasizing speed and low
overhead. These tools are primarily designed to
provide fast access to real time temperature
information for use in thermal management policies.
Such techniques are particularly useful for making
runtime steering decisions to reduce heat dissipation.
Since the focus is to provide temperature information
quickly, the profiling aspects of these direct
measurement techniques are limited1.

Heavy-weight tools use software thermal models
of system hardware, emphasizing flexibility and
accuracy. These thermal simulation tools [2, 7, 10,
13] are primarily designed to provide a means of
estimating the thermals of proposed hardware
configurations. Profiling data from simulation is
extremely detailed. While thermal simulations can be
used to profile and study the effects of temperature-
aware designs, such use is somewhat prohibitive.
Thermal simulation of a single processor or system
may require a team of experts from several
disciplines including material scientists, mechanical
and electrical engineers, and experts in computational
fluid dynamics and computer systems and
architecture [6]. Small system changes may require
redesign and revalidation of the thermal model.
Additionally, the time necessary to obtain simulated

1 While the steering and control techniques themselves are often
quite useful, we are speaking to the lack of insight provided by the
raw temperature samples being used.

2007 International Conference on Parallel Processing (ICPP 2007)
0-7695-2933-X/07 $25.00 © 2007

2

data is often orders of magnitude slower than runtime
sensor data obtained from a real system.

Heavy-weight tools provide detail at the expense
of speed while light-weight tools provide speed at the
expense of detail. This leaves a noticeable gap
between the two extremes of thermal profiling and
analysis. For instance, which tool is best to answer
the following fundamental parallel application-
related questions among the first asked by a user
interested in the effects of thermal management?
1. What parts of my parallel application will benefit

from thermal management techniques?
2. Where do I start optimizing my parallel

application to reduce thermals?
3. Are the thermal properties of my application

similar across machines in a cluster?
4. What and where are the performance effects of

thermal optimizations on my application?
Clearly, light-weight tools may provide the

portability necessary to gather thermal profiling data,
but they are limited to temperature measurements and
do not provide the level of detail needed to answer
questions 1, 2, and 4. Heavy-weight tools can provide
the detail necessary, but many thermal simulators do
not run native system software which may lead to
inaccuracy. Portability to several systems quickly is
also questionable due to thermal model development
requirements while the time needed for iterative
experimentation will probably be prohibitive as well.
Thus, heavy weight tools may be impracticably slow,
cumbersome or inaccurate for answering questions 1-
4.

We propose a middle-weight thermal profiling and
analysis tool that provides the detail necessary to
answer such important questions quickly while
simultaneously maintaining portability and usability.
We call our tool temperature estimator, or Tempest
for short.

Tempest leverages existing GNU compiler support
to transparently create thermal and performance
profiles for any source code using simple command
line executions. At runtime, Tempest collects and
parses the raw performance and thermal data and
after a successful program termination, prints a
summary to standard output. Results include time and
temperature measurements for each function
executed by the program. Tempest also provides a
non-transparent profiling library independent of the
compiler.

Tempest does not significantly alter the
performance of an application and incurs less than
7% overhead for temperature and performance
profiling for the applications we studied. Tempest is
portable and easy to use, allowing experts and non-
experts alike to profile temperature and validate
thermal reduction techniques.

There are several contributions in our work:
We propose, implement, and validate Tempest, a

middle-weight tool for profiling sequential and
parallel application thermals and validating thermal
management techniques.

We use Tempest to provide thermal profiles of
several classes of parallel applications from common
benchmarks including NAS PB.

We demonstrate how Tempest can be used to
profile and analyze the effects of thermal
optimizations on a parallel application.

This paper is organized as follows. First we
describe related work to place our work in the context
of ongoing research in thermal profiling and
management techniques as well as work on system
power and energy optimization. Next we describe the
design and validation of Tempest. Then we discuss
the profiling results for several parallel benchmarks
followed by an analysis of the thermals at function-
level granularity. We conclude with a discussion of
the limitations and future work for Tempest.

2. Related Work

To the best of our knowledge there have been no
studies of the thermal properties of parallel scientific
applications. There have been a limited number of
thermal studies of commercial systems, particularly
at the single system level. Traditionally thermal
studies were relegated to the domain of mechanical
engineering. In 2003, Skadron et al proposed a
simulation-based approach called HotSpot [14] and
made the case for thermal considerations early in
microprocessor layout design. Unfortunately,
ascertaining the effects of heat dissipation can be
cumbersome. HotSpot and tools proposed by others
[4, 7, 8] primarily use a combination of architecture
simulation and thermodynamic models to quantify
the heat dissipation of single system components.

Recently, researchers from Rutgers created a tool
suite called Mercury [6] that provides system-level
thermal profiling data using a model-based emulation
approach. They use discrete heat flow models to
increase emulation speed and thermal sensors are
used to validate emulation within 1 degree Celsius.
The primary use for this toolset is to emulate thermal
emergencies and test techniques to reduce heat
damage, interruptions, migrate tasks, etc.

Bellosa et al [1, 11] propose the use of hardware
counters to predict power and thermal profiles. The
basic approach is to identify a correlation between
event counts and power or thermal properties. Then,
an analytical model is created using statistical
regression to identify coefficients for a given
application. The result is a model that predicts
thermal temperatures based on performance data.

2007 International Conference on Parallel Processing (ICPP 2007)
0-7695-2933-X/07 $25.00 © 2007

3

Unlike simulation, such models are very fast but
inflexible. For example, these techniques do not
extend beyond the CPU due to the dependence on
hardware counters.

There has also been some thermal-aware work
related to data centers for non-interactive commercial
workloads. For example, global scheduling across
thousands of systems has been proposed to reduce the
energy required to cool data center clusters [5, 12].
These studies propose algorithms that use real-time
temperature monitoring data in the aisles between
servers to optimally distribute work to the servers in
cooler regions of the data center. This is shown to
reduce the load on data center cooling equipment
thus realizing significant operational cost savings.

To the best of our knowledge, there are no
approaches to create a real-time tool that provides a
fine-grain thermal profile of an application at the
function level. Parallel scientific applications are
inherently interactive, phased-based and suffer
dependencies across and within nodes. This implies
fine grain profiling is necessary to identify and
correlate thermal properties to source code. There are
no simulators currently available that accurately
model performance and thermals for clusters. The
Mercury emulation tool is capable of modeling small
clusters, but it requires a deep understanding of the
heat flow in a system and is not easily ported. Our
Tempest tool is orthogonal to these ongoing efforts
and provides a tool that is accurate, portable, and
collects details sufficient for analyzing parallel
scientific codes.

3. Tempest Design and Framework

To profile the thermal characteristics of parallel
scientific applications, we created a framework called
Tempest (temperature estimator). Figure 1 illustrates
how Tempest measures real time thermal data from
individual nodes in a cluster using hardware sensors
and correlates this data with program execution.
While Tempest requires source code recompilation
presently, runtime profiling and analysis is automatic
and transparent. Using Tempest we are able to profile
any function’s thermal characteristics in a clustered
system. In this section, we provide a high-level view
of the inner workings of Tempest. Moreover,
Tempest also provides API for a thermal-aware user
to explicitly reference from within a program.

3.1 Design evolution

We had several design goals for Tempest. First, since
we had experience using simulation-based thermal
measurement tools like HotSpot, we wanted to create
something that was significantly easier for non-

experts to use. We attempted to minimize complexity
for both use of the tool and understanding of the
results. Second, we wanted to maintain portability.
Our initial application of the tool was thermal
profiling of parallel applications on various systems.
This work required a tool that was easy to port.
Third, we wanted the tool to be as non-intrusive as
possible. This was a significant challenge since
sampling thermal sensors can have high overhead and
we required fine-grain measurements to correlate
temperature to source code.

We iterated through several designs before
converging on our current implementation of
Tempest. We initially set out to create a tool similar
in design and functionality to gprof, a popular

Figure 1: Tempest Framework Design. Tempest
leverages the instrumentation provided in a GNU
compiler to thermally profile an application on any
number of nodes in a cluster. Users must simply
compile with instrumentation enabled, link to one or
more Tempest libraries, run their code, and invoke
the Tempest parser for post processing. By default,
Tempest writes data to the standard output, but
data can be dumped to a file in a variety of formats.

2007 International Conference on Parallel Processing (ICPP 2007)
0-7695-2933-X/07 $25.00 © 2007

4

performance profiling tool. Unfortunately, we had to
abandon this idea early on since gprof tracks
functions at a very high level of granularity. For
example, gprof creates buckets for functions and adds
to buckets as it spends time in various functions;
gprof does not pinpoint which function was executing
at time X in a program. Tempest requires a function
level timeline since temperature readings from
sensors occur and vary in real time throughout the
duration of a code. It is quite possible that the same
function may execute at different temperatures during
an execution as conditions change with real time.
Hence, simple modifications to gprof would not be
appropriate since it did not offer the level of control,
detail, and accuracy we required for thermal
profiling.

Due to our portability goal, we avoided integrating
temperature measurement and process monitoring
within the OS kernel even though it could result in
lower overhead and would be completely transparent
to the user. For similar reasons we decided against
binary rewriting of the running application and
modification of glibc. We plan to reconsider both of
these approaches in succeeding versions of the tool.
Consequently, we adopted the approach of relying on
the compiler to provide instrumentation hooks for
tracing the execution of the program and a user-level
library that is easily portable and can be linked to the
application at compile time to generate run-time
thermal measurements.

3.2 Implementation details

Our approach involves: 1) measuring the entry and
exit times of a function; and 2) measuring the
temperature during the course of a function’s
execution. We implemented a shared library that
leverages support from the gcc compiler. The gcc
compiler exports function-handlers to applications
compiled with -finstrument-functions option. Using
the handlers we were able to determine the function
entry and exit instances. However in order to measure
entry and exit times, we needed a lightweight timer
which could give us a time stamp. We avoided using
timer functions provided by the system as they are
known to incur significant overhead, changing the
true nature of the application’s execution. Instead we
opted for sampling a hardware counter using the rdtsc
instruction2.

In order to measure temperature while the
program is running, we created a light weight
temperature measuring process (tempd). The tempd

2 Technically speaking, rdtsc is platform dependent. However, we
identified the equivalent instruction set on the PowerPC
architecture.

process samples temperature four times per second
using sensors on the motherboard and processor. The
tempd process is a part of our shared library and is
launched before the main function of the profiled
application is invoked. The profiling information for
every node in the cluster along with the timestamps is
aggregated into a trace file. Upon starting an
application and just prior to exiting, the destructor in
the shared library is called which sends a signal to
tempd for termination and performs cleanup
operations. In this implementation we assume that the
underlying temperature sensors are accurate. We
validated the hardware thermal sensors for accuracy
by running a set of CPU intensive micro-benchmarks
and comparing sensor measurements to those
measured by an external sensor attached to the CPU.

The Tempest parser acquires function timestamps
and provides a mapping between timestamps and
temperature for the workload on the cluster. The
parser then reads the symbol table of the executable
to map addresses of functions to their names to
generate a human-readable functional temperature
profile. This mapping provides a complete thermal
profile of the application. We note that while
function-level granularity is the focus of this paper,
Tempest also supports measurement at basic block
granularity using libtempestperblk.so. Basic block
measurement is non-transparent and requires explicit
API calls.

3.3 Limitations of Tempest

Tempest was designed to incur minimal profiling
overhead. The rdtsc instruction minimizes sampling
overhead, but introduces complications such as clock
skewing across processors or cores. Tempest
compensates for such issues by binding applications
to a processor and core for the duration of execution
and has been validated for the applications described
on multi-processor and multi-core systems.
Applications that consistently migrate processes
across cores and processors would incur additional
overhead and probably require modifications to
Tempest for accurate results. Tempest also will incur
additional overhead when profiling applications
which invoke functions with very short life spans
repeatedly. We are attempting to improve Tempest
for such codes presently.

3.4 Verification

We tested Tempest on a number of systems and
compilers first using a series of micro-benchmarks.
Tempest measures data from all available thermal
sensors. On the systems we measured, we observed
as few as 3 sensors on x86 platforms from AMD and

2007 International Conference on Parallel Processing (ICPP 2007)
0-7695-2933-X/07 $25.00 © 2007

5

up to 7 sensors on PowerPC G5 systems. Tempest
will run on any Linux-based system that has support
for the LM sensors package. As mentioned, Tempest
currently supports gcc for C code, g++ for C++ code,
and g77 for FORTRAN code. Due to space
limitations we present a subset of results we gathered
using Tempest3.

We compared Tempest measurements to gprof.
The gprof tool provides an estimate of the time spent
in each function of the program. We compared the
original code, to the original code using gprof, and
the original code using Tempest. Both tools provided
similar results for total execution time in the various
code functions within the variance mentioned.Gprof
introduced less than 10% overhead to the original
code for all codes measured including the SPEC CPU
2000 benchmarks and the NAS Parallel Benchmark
suite. Tempest introduced less than 7% overhead for
the same codes. Repeated measurements were subject
to variance of about 5%. The results presented are an
average sample from at least 5 runs.

4. Thermal Profiling Using Tempest

Tempest provides previously unavailable insight
into the thermal characteristics of applications
running on real systems. In this section we profile
select results from various system and code
implementations. Generally, we found Tempest is
portable and provides accurate, repeatable
measurements. Due to space limits, we do not report
all sensors for all systems. We found the ambient
sensors located throughout the system chassis
valuable did not correlate significantly to source code
phases and were more a reflection of external
temperatures and airflow. Hence, we report only

3 See http://scape.cs.vt.edu for results for all of the systems,
compilers and codes tested and measured.

results from the core CPU sensors and find that the
thermals of an application have some basic trends
that reflect the phases of the application. Another
interesting observation is that thermals vary between
systems (under the same load) at times significantly.

4.1 Experimental Setup

Thermal sensor technology is emergent and at
times unstable, so we attempted to run Tempest on as
many systems as we had access to in an effort to
illustrate portability and usefulness. Systems also had
to support LM Sensors, a Linux package that allows
system-level access to hardware sensors. Systems
include a four node dual-processor, dual-core AMD
1.8GHz Opteron system running a 2.6.9-11 Linux
Kernel, the System X supercomputer (PowerPC G5),
and several x86 32- and 64-bit machines with both
shared and distributed memory. On all systems, we
used GNU C, C++, and/or FORTRAN compilers.

For all experiments (except those noted later) we
disabled DVFS and auto fan speed regulation to
circumvent all thermal feedback effects. This
effectively sets the CPU to its highest frequency and
sets the fan speed to a constant high speed (e.g. 3000
RPMs). We ensure that the cluster was running bare
minimal services in order to eliminate any thermal
noise caused by unnecessary daemons. In order to
detect potential feedback effects, we measured the
steady-state system temperature by running the
tempd process without any workloads. We observed
that tempd had no impact on the system temperature,
and in fact used less than 1% of CPU time. We
allowed the system to return to a steady state
(ambient or system room) temperature after every
test. We repeated our experiments multiple times and
with multiple configurations to check for consistency.

4.2 Serial Micro-benchmarks

In our first set of experiments, we developed some
micro-benchmarks to test the Tempest tool under
various conditions. We primarily tested that the
sensor data was being traced correctly, that the
thermal profiles were as expected, and that overhead
was minimal. Table 1 shows results for micro-
benchmark D. Figure 2 shows the results in standard
output format (part a) and thermal profile output (part
b) for micro-benchmark D where the foo1 function
dominates total execution time running a CPU burn
benchmark while foo2 simply exists after a short
timer expires.

Figure 2 Part (a) shows Tempest output divided
horizontally into functions (main, foo1, foo2)
listed by total execution time (inclusive) spent in
each function. The total time heading for each

Table 1: One of five micro-benchmarks to test
Tempest correctness for various interleaving
and recursion conditions. All benchmarks
include: A (main alone), B (one function), C
(multiple functions), D (multiple functions with
interleaving), and E (multiple functions with
recursion and interleaving)

D: main()

{

foo1(){

foo2();

}

foo2();

}

2007 International Conference on Parallel Processing (ICPP 2007)
0-7695-2933-X/07 $25.00 © 2007

6

function provides the amount of time spent in that
particular function. Since main calls all functions in
this case, total time for main is the duration of the
program. While foo1 accounts for most of the time
spent in main, foo2 accounts for less than 1 second
of the total time. Since the time spent in foo2 is
small relative to the sampling interval for the thermal
sensors, thermal statistical data is not considered
significant for this function. For foo1 and main, all
thermal data is shown for each of two thermal
sensors. The foo1 function is designed to heat up
the CPU, which it does fairly quickly as shown by the
Avg and Max temperatures in Figure 2 part (a).

Figure 2 part (b) plots the temperature trends for
each function. Note the y-axis is temperature in
degrees Fahrenheit. The x-axis is total execution time
in seconds. Also, the duration of each function is
show across the top of the figure. We observe foo1
steadily increases the temperature of the CPU until
foo2 is finally called at which point the temperature
drops abruptly while the timer is set and expires.
Recall that processor and fan speed are fixed for the
duration of these experiments. Thus, we are limiting
the thermal effects to those of the application.

4.3 Parallel Benchmarks

For brevity, we focus on codes from the NAS parallel
benchmark suite. Figures 3 and 4 illustrate the
temperature profile data for two of the NAS PB
codes.

Each graph for a single code is a series of
vertically stacked axes with y-axis for temperature in
Fahrenheit and x-axis for time in seconds. Each

vertical graph for a single code corresponds to nodes
in the cluster. The vertical graphs for a single node
are vertically aligned so as to aid identification of
phase trends in the application. Tables 2 and 3 show
the standard output data from Tempest for the same
runs on one of the nodes.

The FT benchmark shows very regular behavior in
its power profile [3]. Thus, we expected FT (Fourier
Transform) which spends 50% of its time in all-to-all
communication to run fairly cool. The thermal
profiling results were surprising. We observed no
clear system wide trends in the thermals though the
power trends are regular. Nodes 3 and 4 show
steadily warming trends while nodes 1 and 2 have
somewhat volatile behavior around an average
(lower) temperature. Clearly power/thermal trends
can be quite different despite their inherent relation.

The BT benchmark performs several tasks
followed by a synchronization event that occurs at
about 1.5 seconds into the run for our class C
experiments depicted in Figure 4. This is one of the
few codes in the suite that has obviously
synchronized thermal characteristics. At the
synchronization event, all nodes see a dramatic rise in
temperature indicative of increased computation.
Surprisingly, some nodes run hotter than others.
Nodes 1 and 4 jump above 105 degrees, node 2 stays
below, and node 3 runs at over 110 degrees.

 100

 105

 110

 115

 120

 125

 130

 135

59.8653.2146.5639.9133.2626.6019.9513.306.650.000

T
em

pe
ra

tu
re

 (
F

)

Time (seconds)

Microbenchmark on a single node in a cluster

main

foo1 fo
o2

fo
o2main

foo1 fo
o2

fo
o2

cpu temp

Figure 2: Tempest results for micro-benchmark D that is dominated by the foo1 function calling a CPU
burn code that heats up the CPU rapidly. Part (a) shows Tempest standard output. Part (b) shows a
Tempest temperature profile.

(a)
(b)

 Function: main Total Time(sec): 59.860001

 Min Avg Max Sdv Var Med Mod
 sensor1 114.00 120.72 124.00 2.73 7.45 121.00 114.00
 sensor2 94.00 95.12 97.00 0.56 0.32 95.00 95.00

 Function: foo1 Total Time(sec): 59.828545

 Min Avg Max Sdv Var Med Mod
 sensor1 114.00 120.72 124.00 2.73 7.45 121.00 114.00
 sensor2 94.000 95.12 97.00 0.56 0.32 95.00 95.00
--

 Function: foo2 Total Time(sec): 0.000000

 Min Avg Max Sdv Var Med Mod
 sensor1 114.00 114.00 114.00 0.00 0.00 114.00 0.00
 sensor2 94.00 114.00 94.00 0.00 0.00 94.00 0.00

2007 International Conference on Parallel Processing (ICPP 2007)
0-7695-2933-X/07 $25.00 © 2007

7

--

 Function: compute_indexmap__ Total Time(sec): 5.205775

--

 Min Avg Max Sdv Var Med Mod

 sensor1 91.00 91.45 93.00 0.84 0.69 91.00 91.00

 sensor2 93.20 93.70 94.10 0.45 0.19 94.10 94.10

 sensor3 102.20 103.09 104.00 0.56 0.35 103.10 103.10

 sensor4 100.40 101.64 102.20 0.83 0.69 102.20 102.20

 sensor5 111.20 114.55 116.60 2.34 5.52 114.80 111.20

 sensor6 100.40 101.27 102.20 0.89 0.81 100.40 100.40

--

--

 Function: vranlc_ Total Time(sec): 9.885297

--

 Min Avg Max Sdv Var Med Mod

 sensor1 91.00 91.82 93.00 0.98 0.96 91.00 93.00

 sensor2 93.20 93.77 94.10 0.43 0.18 94.10 94.10

 sensor3 102.20 102.88 104.00 0.41 0.17 103.10 103.10

 sensor4 102.20 102.20 102.20 0.00 0.00 102.20 102.20

 sensor5 113.00 114.32 116.60 1.08 1.17 114.80 114.80

 sensor6 100.40 101.25 102.20 0.89 0.80 100.40 102.20

--

--

Function: transpose2_local__ Total Time(sec): 20.722044

--

 Min Avg Max Sdv Var Med Mod

 sensor1 91.00 91.53 93.00 0.88 0.78 91.00 93.00

 sensor2 93.20 93.41 94.10 0.38 0.15 93.20 94.10

 sensor3 102.20 103.25 104.00 0.39 0.16 103.10 104.00

sensor4 102.20 103.73 107.60 1.58 2.52 104.00 104.00

sensor5 114.80 118.49 120.20 1.81 3.23 118.40 116.60

sensor6 100.40 103.71 105.80 1.29 1.68 104.00 102.20

--

Table 2: Partial Tempest functional profile of FT
benchmark with NP=4, class C.

Figure 3: Thermal profile of FT benchmark with
NP=4, and Class C.

Figure 4: Thermal profile of BT benchmark with
NP=4, and Class C.

Function: adi_ Total Time(sec): 6.320194

--

 Min Avg Max Sdv Var Med Mod

 sensor1 91.00 91.000 91.000 0.00 0.00 91.000 91.00

 sensor2 93.20 93.200 93.200 0.00 0.00 93.200 93.20

 sensor3 104.00 104.00 104.00 0.00 0.00 104.00 104.00

 sensor4 102.20 103.96 105.80 1.80 3.24 102.20 102.20

 sensor5 113.00 113.01 114.80 0.16 0.02 113.00 113.00

 sensor6 102.20 102.20 102.20 0.00 0.00 102.20 102.20

--

--

 Function: matvec_sub__ Total Time(sec): 4.081683

--

 Min Avg Max Sdv Var Med Mod

 sensor1 91.00 91.00 91.00 0.00 0.00 91.00 91.00

 sensor2 93.20 93.22 93.20 0.02 0.00 93.20 93.20

 sensor3 104.00 104.00 104.00 0.00 0.00 104.00 104.00

 sensor4 102.20 103.98 105.80 1.80 3.24 102.20 105.80

 sensor5 113.00 113.04 114.80 0.16 0.02 113.00 114.80

 sensor6 102.20 102.22 102.20 0.02 0.00 102.20 102.20

 Function: matmul_sub__ Total Time(sec): 3.797554

--

 Min Avg Max Sdv Var Med Mod

 sensor1 91.00 91.00 91.00 0.00 0.00 91.00 91.00

 sensor2 93.20 93.22 93.20 0.02 0.00 93.20 93.20

 sensor3 104.00 104.00 104.00 0.00 0.00 104.00 104.00

 sensor4 102.20 103.97 105.80 1.80 3.24 102.20 105.80

 sensor5 113.00 113.01 114.80 0.16 0.02 113.00 114.80

 sensor6 102.20 102.22 102.20 0.02 0.00 102.20 102.20

0 50 100 150 200 250 300 350 400 450
105

110

115

120

0 50 100 150 200 250 300 350 400 450
105

110

115

120

0 50 100 150 200 250 300 350 400 450
105

110

115

120

T
e
m

p
e
ra

tu
re

 (o
F

)

0 50 100 150 200 250 300 350 400 450
105

110

115

120

Time(sec)

node 1

node 2

node 3

node 4

FT

0 0.5 1 1.5 2 2.5 3 3.5
100

105

110

0 0.5 1 1.5 2 2.5 3 3.5
100

105

110

T

e
m

p
e
ra

tu
re

 (o
F

)

0 0.5 1 1.5 2 2.5 3 3.5
100

105

110

0 0.5 1 1.5 2 2.5 3 3.5
100

105

110

Time(sec)

node1

node 2

node 3

node 4

BT

Table 3: Partial Tempest functional profile of BT
benchmark with NP=4, class C.

2007 International Conference on Parallel Processing (ICPP 2007)
0-7695-2933-X/07 $25.00 © 2007

8

5. Conclusions and Future Work

We have designed, implemented, and validated a
middleweight tool for fine-grain profiling of the
thermal properties of sequential and parallel
applications. We used the tool to perform the first
fine-grain thermal profiling of parallel scientific
applications running on real systems. Our results
indicate that the workload characteristics including
amount and type of computation can affect the
thermals significantly while there is also variance
observable for the same workload across different
nodes in a system. We used Tempest to identify hot
nodes and hot spots in code for the NAS parallel FT
and BT benchmarks.

Though we have obtained promising results, more
work is needed. We have only begun to use Tempest
to study interesting thermal phenomena in clusters.
Though we have some understanding of the trends in
thermals for various workloads, we need to isolate
performance characteristics at finer granularity to see
if we can identify specific traits in codes that lead to
higher thermals. These kinds of observations could
lead to techniques that encourage thermal aware code
(or library) development. We would also like to study
the impact of other management techniques such as
cluster-wide workload migration from hot servers to
cooler servers. Though this has been done for
commercial workloads, the level of detail provided
by Tempest could identify tradeoffs between various
techniques that have not been identified. Finally, we
would like to study the use of Tempest data at
runtime to make thermal management decisions.

6. References

[1] F. Bellosa, "The Benefits of Event-Driven
Energy Accounting in Power-Sensitive
Systems," proceedings of Proceedings of 9th
ACM SIGOPS European Workshop,
Kolding, Denmark, 2000.

[2] D. Brooks, V. Tiwari, and M. Martonosi,
"Wattch: a framework for architectural-level
power analysis and optimizations," in
Proceedings of the 27th annual
international symposium on Computer
architecture. Vancouver, British Columbia,
Canada: ACM Press, 2000.

[3] K. W. Cameron, R. Ge, and X. Feng, "High-
Performance, Power-Aware Distributed
Computing for Scientific Applications,"
Computer, 38 (11), pp. 40-47, 2005.

[4] P. Chaparro, J. Gonzalez, and A. Gonzalez,
"Thermal-Effective Clustered
Microarchitectures," proceedings of First

Workshop on Temperature-Aware
Computer Systems, Munich Germany, 2004.

[5] J. S. Chase, D. C. Anderson, P. N. Thakar,
A. M. Vahdat, and R. P. Doyle, "Managing
energy and server resources in hosting
centers," in Proceedings of the eighteenth
ACM symposium on Operating systems
principles. Banff, Alberta, Canada: ACM
Press, 2001.

[6] T. Heath, A. P. Centeno, P. George, L.
Ramos, and Y. Jaluria, "Mercury and freon:
temperature emulation and management for
server systems," SIGARCH Comput. Archit.
News, 34 (5), pp. 106-116, 2006.

[7] M. Huang, J. Renau, S.-M. Yoo, and J.
Torrellas, "A framework for dynamic energy
efficiency and temperature management," in
Proceedings of the 33rd annual ACM/IEEE
international symposium on
Microarchitecture. Monterey, California,
United States: ACM Press, 2000.

[8] W. L. Hung, Y. Xie, N. ViJ'aykrishnan, M.
Kandemir, and M. J. Irwin, "Thermal-aware
task allocation and scheduling for embedded
systems," 2005.

[9] J. Koomey, "Estimating total power
consumption by servers in the US and the
world," proceedings of EPA Data Centers
Technical Workshop, Santa Clara, CA,
2007.

[10] P. Liu, Z. Qi, H. Li, et al., "Fast thermal
simulation for architecture level dynamic
thermal management," in Proceedings of the
2005 IEEE/ACM International conference
on Computer-aided design. San Jose, CA:
IEEE Computer Society, 2005.

[11] A. Merkel, F. Bellosa, and A. Weissel,
"Event-Driven Thermal Management in
SMP Systems," proceedings of Second
Workshop on Temperature-Aware
Computer Systems, Madison, Wisconsin,
2005.

[12] J. Moore, J. Chase, P. Ranganathan, and R.
Sharma, "Making Scheduling "Cool":
Temperature-Aware Workload Placement in
Data Centers," proceedings of USENIX
2005 Annual Technical Conference, 2005.

[13] K. Skadron, M. R. Stan, K.
Sankaranarayanan, et al., "Temperature-
aware microarchitecture: Modeling and
implementation," ACM Trans. Archit. Code
Optim., 1 (1), pp. 94-125, 2004.

[14] K. Skadron, M. R. Stan, H. Wei, et al.,
"Temperature-aware computer systems:
Opportunities and challenges," Micro, IEEE,
23 (6), pp. 52-61, 2003.

2007 International Conference on Parallel Processing (ICPP 2007)
0-7695-2933-X/07 $25.00 © 2007

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

