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Abstract
Compute clusters are consuming more power at 

higher densities than ever before. This results in 
increased thermal dissipation, the need for powerful 
cooling systems, and ultimately a reduction in system 
reliability as temperatures increase. Over the past 
several years, the research community has reacted to 
this problem by producing software tools such as 
HotSpot and Mercury to estimate system thermal 
characteristics and validate thermal-management 
techniques. While these tools are flexible and useful, 
they suffer several limitations. For the average user 
such simulation tools can be cumbersome to use. 
These tools may take significant time and expertise to 
port to different systems. Lastly, such tools produce 
significant detail and accuracy at the expense of 
execution time enough to prohibit iterative testing. 
We propose a fast, easy to use, accurate, portable 
software tool called Tempest (for temperature 
estimator) that leverages emergent thermal sensors 
to enable user profiling, evaluating, and reducing the 
thermal characteristics of systems and applications. 
In this paper, we illustrate the use of Tempest to 
analyze the thermal effects of various parallel 
benchmarks in clusters. 

1. Introduction 

The power consumption of clusters of servers has 
reached critical levels. The US Environmental 
Protection Agency recently announced its intention to 
reward energy efficient server designs with 
EnergyStar ratings, a program popularized for 
appliances and monitors in the last 25 years [9]. 
Server power is increasing for two primary reasons. 
First, the pursuit of Moore’s law has led to devices 
that contain large numbers of transistors at higher 
densities. Second, the pursuit of performance has led 
to systems (server clusters and data centers) with 
large numbers of power-hungry components in close 
proximity. 

Increased power consumption and system 
densities have multiple side effects. Operation costs 
increase for higher powered clusters. Meanwhile 
power consumption produces additional heat which 

must be dissipated by complex cooling systems and 
can result in higher average operating temperatures 
which decrease the reliability of microelectronics. 
For example, the Arrhenius equation states a 
temperature increase of 10 degrees Celsius results in 
reliability decrease of an electronic device by 50 
percent. In a compute server cluster this translates to 
a shorter average life span for each electronic device 
and a shorter mean-time-between-failure (MTBF). 

To curb the effects of rising thermal temperatures 
in compute servers, the research community has 
introduced tools to enable design and validation of 
thermal management techniques that reduce heat 
dissipation. Light-weight tools use direct thermal 
sensor measurement, emphasizing speed and low 
overhead. These tools are primarily designed to 
provide fast access to real time temperature 
information for use in thermal management policies. 
Such techniques are particularly useful for making 
runtime steering decisions to reduce heat dissipation. 
Since the focus is to provide temperature information 
quickly, the profiling aspects of these direct 
measurement techniques are limited1.

Heavy-weight tools use software thermal models 
of system hardware, emphasizing flexibility and 
accuracy. These thermal simulation tools [2, 7, 10, 
13] are primarily designed to provide a means of 
estimating the thermals of proposed hardware 
configurations. Profiling data from simulation is 
extremely detailed. While thermal simulations can be 
used to profile and study the effects of temperature-
aware designs, such use is somewhat prohibitive. 
Thermal simulation of a single processor or system 
may require a team of experts from several 
disciplines including material scientists, mechanical 
and electrical engineers, and experts in computational 
fluid dynamics and computer systems and 
architecture [6]. Small system changes may require 
redesign and revalidation of the thermal model. 
Additionally, the time necessary to obtain simulated 

                                                          
1 While the steering and control techniques themselves are often 
quite useful, we are speaking to the lack of insight provided by the 
raw temperature samples being used.

2007 International Conference on Parallel Processing (ICPP 2007)
0-7695-2933-X/07 $25.00  © 2007



2

data is often orders of magnitude slower than runtime 
sensor data obtained from a real system. 

Heavy-weight tools provide detail at the expense 
of speed while light-weight tools provide speed at the 
expense of detail. This leaves a noticeable gap 
between the two extremes of thermal profiling and 
analysis. For instance, which tool is best to answer 
the following fundamental parallel application-
related questions among the first asked by a user 
interested in the effects of thermal management? 
1. What parts of my parallel application will benefit 

from thermal management techniques? 
2. Where do I start optimizing my parallel 

application to reduce thermals? 
3. Are the thermal properties of my application 

similar across machines in a cluster? 
4. What and where are the performance effects of 

thermal optimizations on my application? 
Clearly, light-weight tools may provide the 

portability necessary to gather thermal profiling data, 
but they are limited to temperature measurements and 
do not provide the level of detail needed to answer 
questions 1, 2, and 4. Heavy-weight tools can provide 
the detail necessary, but many thermal simulators do 
not run native system software which may lead to 
inaccuracy. Portability to several systems quickly is 
also questionable due to thermal model development 
requirements while the time needed for iterative 
experimentation will probably be prohibitive as well. 
Thus, heavy weight tools may be impracticably slow, 
cumbersome or inaccurate for answering questions 1-
4.

We propose a middle-weight thermal profiling and 
analysis tool that provides the detail necessary to 
answer such important questions quickly while 
simultaneously maintaining portability and usability. 
We call our tool temperature estimator, or Tempest
for short. 

Tempest leverages existing GNU compiler support 
to transparently create thermal and performance 
profiles for any source code using simple command 
line executions. At runtime, Tempest collects and 
parses the raw performance and thermal data and 
after a successful program termination, prints a 
summary to standard output. Results include time and 
temperature measurements for each function 
executed by the program. Tempest also provides a 
non-transparent profiling library independent of the 
compiler. 

Tempest does not significantly alter the 
performance of an application and incurs less than 
7% overhead for temperature and performance 
profiling for the applications we studied. Tempest is 
portable and easy to use, allowing experts and non-
experts alike to profile temperature and validate 
thermal reduction techniques. 

There are several contributions in our work: 
We propose, implement, and validate Tempest, a 

middle-weight tool for profiling sequential and 
parallel application thermals and validating thermal 
management techniques. 

We use Tempest to provide thermal profiles of 
several classes of parallel applications from common 
benchmarks including NAS PB. 

We demonstrate how Tempest can be used to 
profile and analyze the effects of thermal 
optimizations on a parallel application. 

This paper is organized as follows. First we 
describe related work to place our work in the context 
of ongoing research in thermal profiling and 
management techniques as well as work on system 
power and energy optimization. Next we describe the 
design and validation of Tempest. Then we discuss 
the profiling results for several parallel benchmarks 
followed by an analysis of the thermals at function-
level granularity. We conclude with a discussion of 
the limitations and future work for Tempest. 

2. Related Work 

To the best of our knowledge there have been no 
studies of the thermal properties of parallel scientific 
applications. There have been a limited number of 
thermal studies of commercial systems, particularly 
at the single system level. Traditionally thermal 
studies were relegated to the domain of mechanical 
engineering. In 2003, Skadron et al proposed a 
simulation-based approach called HotSpot [14] and 
made the case for thermal considerations early in 
microprocessor layout design. Unfortunately, 
ascertaining the effects of heat dissipation can be 
cumbersome. HotSpot and tools proposed by others 
[4, 7, 8] primarily use a combination of architecture 
simulation and thermodynamic models to quantify 
the heat dissipation of single system components. 

Recently, researchers from Rutgers created a tool 
suite called Mercury [6] that provides system-level 
thermal profiling data using a model-based emulation 
approach. They use discrete heat flow models to 
increase emulation speed and thermal sensors are 
used to validate emulation within 1 degree Celsius. 
The primary use for this toolset is to emulate thermal 
emergencies and test techniques to reduce heat 
damage, interruptions, migrate tasks, etc. 

Bellosa et al [1, 11] propose the use of hardware 
counters to predict power and thermal profiles. The 
basic approach is to identify a correlation between 
event counts and power or thermal properties. Then, 
an analytical model is created using statistical 
regression to identify coefficients for a given 
application. The result is a model that predicts 
thermal temperatures based on performance data. 
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Unlike simulation, such models are very fast but 
inflexible. For example, these techniques do not 
extend beyond the CPU due to the dependence on 
hardware counters. 

There has also been some thermal-aware work 
related to data centers for non-interactive commercial 
workloads. For example, global scheduling across 
thousands of systems has been proposed to reduce the 
energy required to cool data center clusters [5, 12]. 
These studies propose algorithms that use real-time 
temperature monitoring data in the aisles between 
servers to optimally distribute work to the servers in 
cooler regions of the data center. This is shown to 
reduce the load on data center cooling equipment 
thus realizing significant operational cost savings. 

To the best of our knowledge, there are no 
approaches to create a real-time tool that provides a 
fine-grain thermal profile of an application at the 
function level. Parallel scientific applications are 
inherently interactive, phased-based and suffer 
dependencies across and within nodes. This implies 
fine grain profiling is necessary to identify and 
correlate thermal properties to source code. There are 
no simulators currently available that accurately 
model performance and thermals for clusters. The 
Mercury emulation tool is capable of modeling small 
clusters, but it requires a deep understanding of the 
heat flow in a system and is not easily ported. Our 
Tempest tool is orthogonal to these ongoing efforts 
and provides a tool that is accurate, portable, and 
collects details sufficient for analyzing parallel 
scientific codes. 

3. Tempest Design and Framework 

To profile the thermal characteristics of parallel 
scientific applications, we created a framework called 
Tempest (temperature estimator). Figure 1 illustrates 
how Tempest measures real time thermal data from 
individual nodes in a cluster using hardware sensors 
and correlates this data with program execution. 
While Tempest requires source code recompilation 
presently, runtime profiling and analysis is automatic 
and transparent. Using Tempest we are able to profile 
any function’s thermal characteristics in a clustered 
system. In this section, we provide a high-level view 
of the inner workings of Tempest. Moreover, 
Tempest also provides API for a thermal-aware user 
to explicitly reference from within a program. 

3.1 Design evolution 

We had several design goals for Tempest. First, since 
we had experience using simulation-based thermal 
measurement tools like HotSpot, we wanted to create 
something that was significantly easier for non-

experts to use. We attempted to minimize complexity 
for both use of the tool and understanding of the 
results. Second, we wanted to maintain portability. 
Our initial application of the tool was thermal 
profiling of parallel applications on various systems. 
This work required a tool that was easy to port. 
Third, we wanted the tool to be as non-intrusive as 
possible. This was a significant challenge since 
sampling thermal sensors can have high overhead and 
we required fine-grain measurements to correlate 
temperature to source code. 

We iterated through several designs before 
converging on our current implementation of 
Tempest. We initially set out to create a tool similar 
in design and functionality to gprof, a popular 

Figure 1: Tempest Framework Design. Tempest 
leverages the instrumentation provided in a GNU 
compiler to thermally profile an application on any 
number of nodes in a cluster. Users must simply 
compile with instrumentation enabled, link to one or 
more Tempest libraries, run their code, and invoke 
the Tempest parser for post processing. By default, 
Tempest writes data to the standard output, but 
data can be dumped to a file in a variety of formats. 
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performance profiling tool. Unfortunately, we had to 
abandon this idea early on since gprof tracks 
functions at a very high level of granularity. For 
example, gprof creates buckets for functions and adds 
to buckets as it spends time in various functions; 
gprof does not pinpoint which function was executing 
at time X in a program. Tempest requires a function 
level timeline since temperature readings from 
sensors occur and vary in real time throughout the 
duration of a code. It is quite possible that the same 
function may execute at different temperatures during 
an execution as conditions change with real time. 
Hence, simple modifications to gprof would not be 
appropriate since it did not offer the level of control, 
detail, and accuracy we required for thermal 
profiling. 

Due to our portability goal, we avoided integrating 
temperature measurement and process monitoring 
within the OS kernel even though it could result in 
lower overhead and would be completely transparent 
to the user. For similar reasons we decided against 
binary rewriting of the running application and 
modification of glibc. We plan to reconsider both of 
these approaches in succeeding versions of the tool. 
Consequently, we adopted the approach of relying on 
the compiler to provide instrumentation hooks for 
tracing the execution of the program and a user-level 
library that is easily portable and can be linked to the 
application at compile time to generate run-time 
thermal measurements. 

3.2 Implementation details 

Our approach involves: 1) measuring the entry and 
exit times of a function; and 2) measuring the 
temperature during the course of a function’s 
execution. We implemented a shared library that 
leverages support from the gcc compiler. The gcc 
compiler exports function-handlers to applications 
compiled with -finstrument-functions option. Using 
the handlers we were able to determine the function 
entry and exit instances. However in order to measure 
entry and exit times, we needed a lightweight timer 
which could give us a time stamp. We avoided using 
timer functions provided by the system as they are 
known to incur significant overhead, changing the 
true nature of the application’s execution. Instead we 
opted for sampling a hardware counter using the rdtsc 
instruction2.

In order to measure temperature while the 
program is running, we created a light weight 
temperature measuring process (tempd). The tempd 

                                                          
2 Technically speaking, rdtsc is platform dependent. However, we 
identified the equivalent instruction set on the PowerPC 
architecture. 

process samples temperature four times per second 
using sensors on the motherboard and processor. The 
tempd process is a part of our shared library and is 
launched before the main function of the profiled 
application is invoked. The profiling information for 
every node in the cluster along with the timestamps is 
aggregated into a trace file. Upon starting an 
application and just prior to exiting, the destructor in 
the shared library is called which sends a signal to 
tempd for termination and performs cleanup 
operations. In this implementation we assume that the 
underlying temperature sensors are accurate. We 
validated the hardware thermal sensors for accuracy 
by running a set of CPU intensive micro-benchmarks 
and comparing sensor measurements to those 
measured by an external sensor attached to the CPU. 

The Tempest parser acquires function timestamps 
and provides a mapping between timestamps and 
temperature for the workload on the cluster. The 
parser then reads the symbol table of the executable 
to map addresses of functions to their names to 
generate a human-readable functional temperature 
profile. This mapping provides a complete thermal 
profile of the application. We note that while 
function-level granularity is the focus of this paper, 
Tempest also supports measurement at basic block 
granularity using libtempestperblk.so. Basic block 
measurement is non-transparent and requires explicit 
API calls. 

3.3 Limitations of Tempest 

Tempest was designed to incur minimal profiling 
overhead. The rdtsc instruction minimizes sampling 
overhead, but introduces complications such as clock 
skewing across processors or cores. Tempest 
compensates for such issues by binding applications 
to a processor and core for the duration of execution 
and has been validated for the applications described 
on multi-processor and multi-core systems. 
Applications that consistently migrate processes 
across cores and processors would incur additional 
overhead and probably require modifications to 
Tempest for accurate results. Tempest also will incur 
additional overhead when profiling applications 
which invoke functions with very short life spans 
repeatedly. We are attempting to improve Tempest 
for such codes presently. 

3.4 Verification 

We tested Tempest on a number of systems and 
compilers first using a series of micro-benchmarks. 
Tempest measures data from all available thermal 
sensors. On the systems we measured, we observed 
as few as 3 sensors on x86 platforms from AMD and 
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up to 7 sensors on PowerPC G5 systems. Tempest 
will run on any Linux-based system that has support 
for the LM sensors package. As mentioned, Tempest 
currently supports gcc for C code, g++ for C++ code, 
and g77 for FORTRAN code. Due to space 
limitations we present a subset of results we gathered 
using Tempest3.

We compared Tempest measurements to gprof. 
The gprof tool provides an estimate of the time spent 
in each function of the program. We compared the 
original code, to the original code using gprof, and 
the original code using Tempest. Both tools provided 
similar results for total execution time in the various 
code functions within the variance mentioned.Gprof 
introduced less than 10% overhead to the original 
code for all codes measured including the SPEC CPU 
2000 benchmarks and the NAS Parallel Benchmark 
suite. Tempest introduced less than 7% overhead for 
the same codes. Repeated measurements were subject 
to variance of about 5%. The results presented are an 
average sample from at least 5 runs. 

4. Thermal Profiling Using Tempest 

Tempest provides previously unavailable insight 
into the thermal characteristics of applications 
running on real systems. In this section we profile 
select results from various system and code 
implementations. Generally, we found Tempest is 
portable and provides accurate, repeatable 
measurements. Due to space limits, we do not report 
all sensors for all systems. We found the ambient 
sensors located throughout the system chassis 
valuable did not correlate significantly to source code 
phases and were more a reflection of external 
temperatures and airflow. Hence, we report only 

                                                          
3 See http://scape.cs.vt.edu for results for all of the systems, 
compilers and codes tested and measured.

results from the core CPU sensors and find that the 
thermals of an application have some basic trends 
that reflect the phases of the application. Another 
interesting observation is that thermals vary between 
systems (under the same load) at times significantly. 

4.1 Experimental Setup 

Thermal sensor technology is emergent and at 
times unstable, so we attempted to run Tempest on as 
many systems as we had access to in an effort to 
illustrate portability and usefulness. Systems also had 
to support LM Sensors, a Linux package that allows 
system-level access to hardware sensors. Systems 
include a four node dual-processor, dual-core AMD 
1.8GHz Opteron system running a 2.6.9-11 Linux 
Kernel, the System X supercomputer (PowerPC G5), 
and several x86 32- and 64-bit machines with both 
shared and distributed memory. On all systems, we 
used GNU C, C++, and/or FORTRAN compilers. 

For all experiments (except those noted later) we 
disabled DVFS and auto fan speed regulation to 
circumvent all thermal feedback effects. This 
effectively sets the CPU to its highest frequency and 
sets the fan speed to a constant high speed (e.g. 3000 
RPMs). We ensure that the cluster was running bare 
minimal services in order to eliminate any thermal 
noise caused by unnecessary daemons. In order to 
detect potential feedback effects, we measured the 
steady-state system temperature by running the 
tempd process without any workloads. We observed 
that tempd had no impact on the system temperature, 
and in fact used less than 1% of CPU time. We 
allowed the system to return to a steady state 
(ambient or system room) temperature after every 
test. We repeated our experiments multiple times and 
with multiple configurations to check for consistency.  

4.2 Serial Micro-benchmarks 

In our first set of experiments, we developed some 
micro-benchmarks to test the Tempest tool under 
various conditions. We primarily tested that the 
sensor data was being traced correctly, that the 
thermal profiles were as expected, and that overhead 
was minimal. Table 1 shows results for micro-
benchmark D. Figure 2 shows the results in standard 
output format (part a) and thermal profile output (part 
b) for micro-benchmark D where the foo1 function 
dominates total execution time running a CPU burn 
benchmark while foo2 simply exists after a short 
timer expires. 

Figure 2 Part (a) shows Tempest output divided 
horizontally into functions (main, foo1, foo2)
listed by total execution time (inclusive) spent in 
each function. The total time heading for each 

Table 1: One of five micro-benchmarks to test 
Tempest correctness for various interleaving 
and recursion conditions. All benchmarks 
include: A (main alone), B (one function), C 
(multiple functions), D (multiple functions with 
interleaving), and E (multiple functions with 
recursion and interleaving) 

D: main() 

{

foo1(){

foo2();

}

foo2();

}
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function provides the amount of time spent in that 
particular function. Since main calls all functions in 
this case, total time for main is the duration of the 
program. While foo1 accounts for most of the time 
spent in main, foo2 accounts for less than 1 second 
of the total time. Since the time spent in foo2 is 
small relative to the sampling interval for the thermal 
sensors, thermal statistical data is not considered 
significant for this function. For foo1 and main, all 
thermal data is shown for each of two thermal 
sensors. The foo1 function is designed to heat up 
the CPU, which it does fairly quickly as shown by the 
Avg and Max temperatures in Figure 2 part (a). 

Figure 2 part (b) plots the temperature trends for 
each function. Note the y-axis is temperature in 
degrees Fahrenheit. The x-axis is total execution time 
in seconds. Also, the duration of each function is 
show across the top of the figure. We observe foo1
steadily increases the temperature of the CPU until 
foo2 is finally called at which point the temperature 
drops abruptly while the timer is set and expires. 
Recall that processor and fan speed are fixed for the 
duration of these experiments. Thus, we are limiting 
the thermal effects to those of the application.  

4.3 Parallel Benchmarks 

For brevity, we focus on codes from the NAS parallel 
benchmark suite. Figures 3 and 4 illustrate the 
temperature profile data for two of the NAS PB 
codes. 

Each graph for a single code is a series of 
vertically stacked axes with y-axis for temperature in 
Fahrenheit and x-axis for time in seconds. Each 

vertical graph for a single code corresponds to nodes 
in the cluster. The vertical graphs for a single node 
are vertically aligned so as to aid identification of 
phase trends in the application. Tables 2 and 3 show 
the standard output data from Tempest for the same 
runs on one of the nodes. 

The FT benchmark shows very regular behavior in 
its power profile [3]. Thus, we expected FT (Fourier 
Transform) which spends 50% of its time in all-to-all 
communication to run fairly cool. The thermal 
profiling results were surprising. We observed no 
clear system wide trends in the thermals though the 
power trends are regular. Nodes 3 and 4 show 
steadily warming trends while nodes 1 and 2 have 
somewhat volatile behavior around an average 
(lower) temperature. Clearly power/thermal trends 
can be quite different despite their inherent relation. 

The BT benchmark performs several tasks 
followed by a synchronization event that occurs at 
about 1.5 seconds into the run for our class C 
experiments depicted in Figure 4. This is one of the 
few codes in the suite that has obviously 
synchronized thermal characteristics. At the 
synchronization event, all nodes see a dramatic rise in 
temperature indicative of increased computation. 
Surprisingly, some nodes run hotter than others. 
Nodes 1 and 4 jump above 105 degrees, node 2 stays 
below, and node 3 runs at over 110 degrees. 
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Figure 2: Tempest results for micro-benchmark D that is dominated by the foo1 function calling a CPU 
burn code that heats up the CPU rapidly. Part (a) shows Tempest standard output. Part (b) shows a 
Tempest temperature profile.

(a)
(b)

------------------------------------------------------------------------------- 
 Function: main         Total Time(sec): 59.860001 
------------------------------------------------------------------------------- 
                   Min        Avg      Max     Sdv    Var     Med      Mod 
 sensor1   114.00   120.72   124.00   2.73    7.45   121.00   114.00 
 sensor2   94.00      95.12     97.00    0.56    0.32    95.00     95.00 
------------------------------------------------------------------------------- 
------------------------------------------------------------------------------- 
 Function: foo1         Total Time(sec): 59.828545 
------------------------------------------------------------------------------- 
                  Min       Avg       Max      Sdv     Var     Med      Mod 
 sensor1   114.00   120.72   124.00   2.73   7.45    121.00   114.00 
 sensor2   94.000    95.12     97.00     0.56   0.32    95.00     95.00 
------------------------------------------------------------------------------ 
------------------------------------------------------------------------------- 
 Function: foo2         Total Time(sec): 0.000000 
----------------------------------------------------------------------------- 
                    Min       Avg        Max       Sdv     Var      Med     Mod 
 sensor1   114.00    114.00     114.00    0.00     0.00   114.00   0.00 
 sensor2   94.00      114.00     94.00      0.00     0.00    94.00    0.00 
------------------------------------------------------------------------------- 
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------------------------------------------------------------------------------------ 

 Function: compute_indexmap__ Total Time(sec): 5.205775  

------------------------------------------------------------------------------------ 

    Min       Avg        Max       Sdv        Var       Med        Mod 

 sensor1   91.00      91.45   93.00      0.84      0.69      91.00      91.00 

 sensor2   93.20      93.70   94.10      0.45      0.19      94.10      94.10 

 sensor3  102.20    103.09    104.00     0.56      0.35      103.10    103.10 

 sensor4  100.40    101.64    102.20     0.83       0.69     102.20    102.20 

 sensor5  111.20    114.55    116.60     2.34       5.52     114.80    111.20 

 sensor6  100.40    101.27    102.20     0.89       0.81     100.40    100.40 

------------------------------------------------------------------------------------ 

------------------------------------------------------------------------------------ 

 Function: vranlc_  Total Time(sec): 9.885297  

------------------------------------------------------------------------------------ 

                   Min         Avg        Max         Sdv       Var      Med       Mod 

 sensor1    91.00        91.82      93.00     0.98      0.96     91.00   93.00 

 sensor2    93.20        93.77      94.10     0.43      0.18     94.10   94.10 

 sensor3   102.20     102.88      104.00     0.41      0.17    103.10   103.10 

 sensor4   102.20     102.20      102.20     0.00      0.00    102.20   102.20 

 sensor5   113.00     114.32      116.60     1.08      1.17    114.80   114.80 

 sensor6   100.40     101.25      102.20     0.89      0.80    100.40   102.20 

------------------------------------------------------------------------------------ 

------------------------------------------------------------------------------------ 

Function: transpose2_local__ Total Time(sec): 20.722044  

------------------------------------------------------------------------------------ 

                  Min         Avg         Max         Sdv       Var       Med       Mod 

 sensor1   91.00        91.53      93.00    0.88       0.78      91.00    93.00 

 sensor2   93.20        93.41      94.10        0.38       0.15     93.20    94.10 

 sensor3  102.20      103.25    104.00       0.39       0.16    103.10   104.00  

sensor4   102.20      103.73    107.60    1.58       2.52     104.00   104.00 

sensor5   114.80     118.49    120.20    1.81       3.23     118.40   116.60  

sensor6   100.40     103.71     105.80    1.29       1.68     104.00   102.20 

------------------------------------------------------------------------------------ 

Table 2: Partial Tempest functional profile of FT 
benchmark with NP=4, class C. 

Figure 3: Thermal profile of FT benchmark with 
NP=4, and Class C. 

Figure 4: Thermal profile of BT benchmark with 
NP=4, and Class C. 

------------------------------------------------------------------------------------- 

Function: adi_  Total Time(sec): 6.320194  

------------------------------------------------------------------------------------ 

                   Min       Avg        Max   Sdv      Var       Med   Mod 

 sensor1   91.00     91.000    91.000   0.00    0.00    91.000 91.00 

 sensor2   93.20     93.200    93.200   0.00    0.00    93.200 93.20 

 sensor3   104.00   104.00    104.00   0.00    0.00   104.00 104.00 

 sensor4   102.20   103.96    105.80   1.80    3.24    102.20 102.20 

 sensor5   113.00   113.01    114.80   0.16    0.02    113.00 113.00 

 sensor6   102.20   102.20    102.20   0.00    0.00     102.20 102.20 

------------------------------------------------------------------------------------ 

------------------------------------------------------------------------------------ 

 Function: matvec_sub__ Total Time(sec): 4.081683  

------------------------------------------------------------------------------------ 

                  Min       Avg    Max       Sdv      Var       Med        Mod 

 sensor1   91.00     91.00    91.00     0.00     0.00  91.00      91.00 

 sensor2   93.20     93.22    93.20     0.02     0.00  93.20      93.20 

 sensor3   104.00  104.00    104.00   0.00     0.00 104.00     104.00 

 sensor4   102.20  103.98    105.80   1.80     3.24 102.20     105.80 

 sensor5   113.00  113.04    114.80    0.16    0.02 113.00     114.80 

 sensor6   102.20   102.22   102.20    0.02    0.00 102.20     102.20 

-------------------------------------------------------------------------------------------

----------------------------------------------------------------------------- 

 Function: matmul_sub__ Total Time(sec): 3.797554  

------------------------------------------------------------------------------------ 

                   Min      Avg      Max       Sdv      Var       Med        Mod 

 sensor1   91.00      91.00     91.00      0.00     0.00     91.00       91.00 

 sensor2   93.20      93.22     93.20      0.02     0.00     93.20       93.20 

 sensor3  104.00    104.00    104.00    0.00     0.00    104.00      104.00 

 sensor4  102.20    103.97    105.80    1.80     3.24    102.20     105.80 

 sensor5   113.00   113.01    114.80    0.16     0.02    113.00     114.80 

 sensor6   102.20   102.22    102.20    0.02     0.00    102.20     102.20 

------------------------------------------------------------------------------------- 
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Table 3: Partial Tempest functional profile of BT 
benchmark with NP=4, class C. 
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5. Conclusions and Future Work 

We have designed, implemented, and validated a 
middleweight tool for fine-grain profiling of the 
thermal properties of sequential and parallel 
applications. We used the tool to perform the first 
fine-grain thermal profiling of parallel scientific 
applications running on real systems. Our results 
indicate that the workload characteristics including 
amount and type of computation can affect the 
thermals significantly while there is also variance 
observable for the same workload across different 
nodes in a system. We used Tempest to identify hot 
nodes and hot spots in code for the NAS parallel FT 
and BT benchmarks. 

Though we have obtained promising results, more 
work is needed. We have only begun to use Tempest 
to study interesting thermal phenomena in clusters. 
Though we have some understanding of the trends in 
thermals for various workloads, we need to isolate 
performance characteristics at finer granularity to see 
if we can identify specific traits in codes that lead to 
higher thermals. These kinds of observations could 
lead to techniques that encourage thermal aware code 
(or library) development. We would also like to study 
the impact of other management techniques such as 
cluster-wide workload migration from hot servers to 
cooler servers. Though this has been done for 
commercial workloads, the level of detail provided 
by Tempest could identify tradeoffs between various 
techniques that have not been identified. Finally, we 
would like to study the use of Tempest data at 
runtime to make thermal management decisions. 
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